

T A Č R

Metodika tvorby a vizualizace 3D modelu ložiska uranu Brzkov

1. Obsah a závazná struktura certifikované metodiky

Obsah a závazná struktura certifikované metodiky je zpracována ve smyslu "Metodického postupu pro zpracování a uplatnění výsledků výzkumu a vývoje typu "Nmet – Certifikovaná metodika" Zákona č. 130/2002 Sb., o podpoře výzkumu, experimentálního vývoje a inovací z veřejných prostředků.

1.1. Cíl metodiky

Prostorové modelování ložisek vychází z nutnosti, v rámci dostupných strukturně-geologických, geochemických a ložiskově-technologických parametrů, sestavit co nejvěrnější obraz dané ložiskové struktury a v jejím rámci následně vyhodnotit 3D distribuci konkrétního zrudnění v rámci výrazně heterogenního geologického prostředí. Zásadním problémem je přitom mj. absence jednotné, a moderním analytickým metodám odpovídající, vstupní databáze parametrů nezbytných pro výpočtové modely. Pro vybraná modelová ložiska kritických surovin, byla k dispozici data z 80., 70. let a v řadě případů ještě starších etap geologických průzkumných prací minulého století. Tato skutečnost je jedním z důvodů, proč není možno, bez dodatečného moderního ložiskového průzkumu, využít celosvětově využívaných softwarových řešení, nehledě na fakt že, pro analyzovaná malá ložiska, jakým je i ložisko uranu Brzkov, jsou všechny tyto softwary velmi drahé, a pro daná ložiska tedy potenciálně neekonomické.

Základem našeho navrhovaného postupu tedy bylo vytvořit, s dílčím využitím existujících, ekonomicky akceptovatelných a komerčně dostupných softwarových aplikací, takové komplexní 3D modely morfologie vybraných ložisek, včetně prostorové distribuce uranu, které by s využitím možností 3D počítačové grafiky umožňovalo variabilní odhady zásob a případný následný projekt otvírky konkrétního ložiska.

2. Popis vlastní metodiky

2.1. Geologický popis ložiska uranu Brzkov

Z regionálně geologického hlediska je zájmové území ložiska Brzkov součástí strážeckého moldanubika, které je budováno proterozoickými horninovými komplexy.

Samotné ložisko Brzkov je lokalizováno v prostoru křížení přibyslavské mylonitové zóny (doprovázené četnými tektonickými zónami směru S-J), se sázavským zlomem, (jehož povrchovými projevy jsou strmé dislokace směru ZSZ-VJV a SZ-JV, vyvinuté v exokontaktu třebíčského masívu). Strukturně-geologické schéma širší oblasti je prezentováno na obr. 1.

Rudní tělesa jsou vázána na tektonické dislokace směru SZ-JV a SSZ-JJV s úklonem 55-80° k SV resp. k VSV. Rudní struktury představují otevřené tahové struktury, které probíhají většinou kose k dislokacím sázavského směru (SZ-JV) a často vytvářejí v místech styku s dislokacemi jiných směrů složité rudní uzly. Jednotlivé rudní uzly ložiska Brzkov mají výraznou blokovou stavbu. Rudní tělesa jsou porušována dislokacemi směru SSV-JJZ s úklonem k VJV, podle kterých docházelo k pohybům dílčích tektonických

ker či celých bloků. Celkově lze konstatovat, že tektonické poměry v jednotlivých rudních uzlech i na celém ložisku Brzkov jsou velmi složité (obr. 2 a 3). Okolními horninami rudonosných struktur na ložisku Brzkov jsou v převážné míře migmatitizované biotitické pararuly (v některých případech silimanit-biotitické nebo muskovit-biotitické) a amfibolity.

Obr. 1: Strukturně-geologické schéma širší oblasti ložiska Brzkov (Ondřík et al., 2014).

V horninovém profilu ložiska jsou dále zastoupeny skarny, krystalické vápence, kvarcity a erlány. Horniny jsou místně migmatitizovány a slabě až silně mylonitizovány. Pevnost hornin v jednoosém tlaku se pohybuje od 70 do 120 MPa. Pokryvné útvary nepřesahují mocnost 2,0-3,0 m. Hlouběji je již skalní podloží.

ΤΑ

R

Č

Program Centra kompetence

Obr. 2: Strukturně-geologická mapa úseku Brzkov dle podkladů DIAMO.

Na ložisku bylo prozkoumáno několik strukturních systémů, které vytvářejí tři význačné rudní uzly. Na úseku Brzkov v centrální (východní) části ložiska je lokalizován rudní uzel I tvořený 4 strmými rudními žilami směru SZ – JV s úklonem 55-80° k SV, a to: Br0, Br1, Br2 a Br4. V západním křídle úseku je

lokalizován rudní uzel II, který vytváří strukturní systém Br3 (s rudními žílami Br3, Br3a, Br3b, Br3c). Tyto struktury mají směr zhruba S-J s průměrným úklonem 60° k V.

V místech tektonických komplikací jsou lokalizovány četné odžilky a složité žilníky. Jednotlivé rudní uzly ložiska Brzkov mají výraznou blokovou stavbu.

U-zrudnění je vázáno na několik subparalelních strukturních systémů směru SZ-JV a S-J strmě ukloněných k SV resp. k V, které prorážejí mylonitizované horniny strážeckého moldanubika. Povrchové projevy U-mineralizace jsou známy na strukturách Br1, Br1n a Br3 která je vůdčí tektonickou strukturou. Nejhlubší průsečík z vrtu s uranovou mineralizací na ložisku byl zastižen ve vrtu Pl-197 v hloubce 611 m.

Obr. 3: Geologický řez ložiskem Brzkov, úsek Brzkov dle podkladů DIAMO (legenda viz obr. 2).

Tektonické poměry na ložisku jsou navíc komplikovány vrásovou stavbou, která je charakterizována ostrými izoklinálními vrásami se západní vergencí. Generelní směr osních rovin kopíruje směr foliačních ploch hornin, tj. SSV-JJZ s úklonem k VJV. Celkově je ložisková oblast interpretována jako složité vrásové synklinorium.

V disjunktivní tektonice se vedle převládajících směrů SSV-JJZ a SZ-JV uplatňují tektonické struktury směru ZSZ-VJV s úklonem k JJZ a směru SV-JZ zapadající k JV, vzácně jsou vyvinuty dislokace směru V-Z.

Na rudním uzlu I (Brzkov-východ) byla ověřena rudní tělesa průzkumnými pracemi na žilách: Br1, Br2, Br0, Br3a, Br1b, Br1n, Br1j a Br1e. Mimo to byly zjištěny menší rudní čočky ověřeny na odžilcích Br1f, Br1i, Br1a, Br1h, Be1c, Br1k, Br1e, Br1o+Br1p, Br1q, Br1r, Br2a.Směrná délka rudních těles je řádově desítky až prvé stovky metrů, mocnost zrudnění od 0,3 do 8,0 m (na žilníku na III. p.). Žíly a odžilky se nachází v rudním uzlu označovaném jako Brzkov – východ.

V západním křídle úseku Brzkov, cca 450 m v podloží hlavních rudonosných struktur ložiska, je lokalizován rudní uzel II (Brzkov – západ). Důlními pracemi byl ověřen strukturní systém Br3, který má zhruba směr S-J s úklonem 80-85° k V. Důlními pracemi byla ověřována rudonosnost žil Br3, Br3a, Br3b, Br3c a odžilků.

Při hloubení jámy J-12 bylo indikováno kontrastní U-zrudnění mezi 192. m a 222. m na žíle označené jako Br12, která končí na ssv.-jjz. dislokaci s úklonem 70° k VJV. Žíla Br12 je velmi strmá, směru 340° s úklonem 85° převážně k VSV, lokálně je protiklonná, mocnost 10 - 30 cm. Výplň tvoří chloritizovaná horninová drť s úlomky aplitů a pegmatitů tmelené tektonickým jílem s hematitem či tektonická brekcie tmelená markazitem a narůžovělým karbonátem.

Na úseku Brzkov se pohybuje mocnost rudních žil mezi 0,3 - 3,2 m, průměrná mocnost je 1,5 1,7 m. Mocnost celkového zrudnění v komplikovaných žilnících je až 8,0 m. Očekávaná kovnatost těžené rudy z úseku Brzkov je (na základě předkládaného výpočtu zásob) 0,160 0,180 % U. Na úseku Brzkov je předpokládáno vysoké vnitřní znehodnocení v rámci RT.

Podrobněji se strukturně-geologické situaci ložiska Brzkov věnujeme v kapitole 2.2.3 Konstrukce 3D strukturního modelu.

2.2. Metodické postupy a algoritmy tvorby a vizualizace 3D modelu ložiska uranu Brzkov

V této kapitole jsou definovány jednotlivé kroky metodického postupu tvorby a vizualizace 3D modelu ložiska uranu Brzkov. Tyto kroky na sebe navazují a v nich použité algoritmy zpracování údajů a vytvořený software jsou detailně popsány ve stejnojmenných podkapitolách:

- 2.2.1 Revize všech dostupných archivních materiálů, verifikace a korekce vstupních dat.
- 2.2.2 Výpočet a vizualizace prostorové lokalizace vstupních dat.
- 2.2.3 Konstrukce 3D strukturního modelu.
- 2.2.4 Výpočet topologie 3D gridu tělesa uranu podle 3D strukturního modelu (program Uran_Teleso, modul Výpočet topologie 3D gridu tělesa).
- 2.2.5 Základní statistické zpracování obsahu uranu.
- 2.2.6 Zobrazení vstupních dat ložiska uranu ve 3D v prostředí Voxler, stanovení elipsoidů anizotropie a výběru dat, vytvoření 3D gridů obsahu uranu a export 2D gridů v jednotlivých horizontech ve formátu Surfer.
- 2.2.7 Odhad zásob na základě 2D gridů obsahu uranu a jejich převedení do 3D gridu (program Uran_Teleso, modul Výpočet hodnot 3D gridů tělesa a odhad zásob a modul Výpočet hodnot 3D gridu tělesa v NNR).
- 2.2.8 Vizualizace horizontálních řezů ve 2D v prostředí Surfer (program Uran_Teleso, modul Vykreslení horizontálních řezů zadaných vrstev).
- 2.2.9 Vizualizace sítě vertikálních řezů ve 2D v prostředí Surfer (program Uran_Teleso, modul Vykreslení zadaných vertikálních řezů XZ a YZ).
- 2.2.10 Vizualizace technologických parametrů ve 3D v prostředí Voxler.

Jednotlivé kroky metodického postupu jsou realizovány tak, aby bylo možno při libovolné změně parametrů tyto kroky programově rychle přepočítat bez nutnosti zdlouhavých ručních postupů. Proto je

také možné snadno provést modelování v několika variantách (například s použitím více variant parametrů gridování apod.).

2.2.1. Revize všech dostupných archivních materiálů, verifikace a korekce vstupních dat

Archivní data, geologické informace a geologické řezy (ve formátu jpg) nezbytné pro tvorbu 3D strukturního modelu byly převzaty od státního podniku Diamo. Z těchto informací byly kromě prostorové pozice jednotlivých horninových těles a tektonických rozhraní získány i prostorové informace ke strukturním datům a informace o analyzovaných vzorcích odebraných z povrchových a důlních děl, šachtic a rýh.

Převzatá data byla ve formátu *xlsx*. Pro účely 3D modelování obsahu uranu byly důležité vybrané údaje následujících tabulek souboru *Brzkov data ČSUP.xlsx*:

- tabulka OBJEKT, celkem 675 průzkumných děl (ukázka viz tab. 1),
- tabulka krvzor, celkem 13577 řádků s údaji o metrážích (od, do, délka) vzorků (viz tab. 2),
- tabulka *radian*, celkem 9423 řádků s údaji o obsazích radioaktivních prvků vzorků (ukázka viz tab. 3),

a souboru INKDAT-vrty PL.xlsx:

 tabulka průzkumné vrty Polná, celkem 9423 řádků s údaji o inklinometrii povrchových vrtů (ukázka viz tab. 4)

Tabulka 1: Část údajů tabulky OBJEKT.

DIL	0	ALIAS	DRUH_DILA	MAPA	MAPA_NOVA	-	ZAMER_P	×	•	Υ	-	Z	¥	ZAMER_V 💌	AZIMUT	▼ D	ELKA_DILA	ROK_UKONC	-
В	III 1		к		2322		N		1114825.00)	657485.00	556	.00	V		-2	2.0)	78
В	III 2		К		2322		N		1114810.00)	657395.00	553	.00	V		-2	2.0)	78
в	III 3		К		2322		N		1114805.00)	657300.00	550	.00	V		-2	2.2		78
В	III 4		К		2322		N		1114790.00)	657190.00	541	.00	V		-2	2.1		78
В	III 5		К		2322		N		1114788.00)	657090.00	529	.00	V		-2	1.8		78
в	III 6		К		2322		N		1114780.00)	656990.00	531	.00	V		-2	2.0)	78
В	III 7		К		2322		N		1114779.00)	656890.00	532	.00	V		-2	1.7	,	78
В	III 8		К		2322		N		1114771.00)	656785.00	534	.00	V		-2	1.1		78
В	III 9		К		2322		N		1114767.00)	656685.00	538	.00	V		-2	1.0)	78
В	III10		К		2322		N		1114762.00)	656585.00	542	.00	V		-2	1.8		78
В	1111		К		2322		N		1114759.00)	656490.00	539	.00	V		-2	1.3		78
в	1112		К		2322		N		1114753.00)	656385.00	532	.00	V		-2	1.8		78
В	1113		К		2322		N		1114748.00)	656285.00	522	.00	V		-2	1.9		78
В	V 1		К		2322		N		1115630.00)	657500.00	544	.00	V		-2	1.8		78
В	V 2		К		2322		N		1115630.00)	657390.00	540	.00	V		-2	2.0)	78
В	V 3		К		2322		N		1115618.00)	657310.00	540	.00	V		-2	1.5		78
В	V 4		К		2322		N		1115618.00)	657205.00	546	.00	V		-2	1.2		78

Tabulka 2: Cast udaju tabulky krvzo.	Tabulka 2: Cást údajů tabu	ılky krvza
--------------------------------------	----------------------------	------------

DIL	.0 💌	ALIAS 💌	DRUH_DILA	CISLOVZ 💌	D 💌	Z_BAZE 💌	HLOUBKA 💌	VZDALENOST 💌	DELKA 💌
В	III 1		К	5502	М		2	0	0.9
В	III 2		К	5503	М		2	0	0.2
В	III 3		К	5504	M		2.2	0	0.7
В	III 4		К	5505	М		2.1	0	0.6
В	III 5		К	5506	M		1.8	0	0.8
В	III 6		К	5507	M		2	0	0.5
В	III 7		К	5508	M		1.7	0	0.5
В	III 8		К	5509	М		1.1	0	0.1
В	III 9		К	5510	M		1	0	0.4
В	III10		К	5511	M		1.8	0	0.1
В	1111		К	5512	М		1.3	0	0.8
В	III12		К	5513	M		1.8	0	0.5
В	V 2		К	5402	M		2	0	0.5
В	V 3		К	5403	М		1.5	0	0.9

ТА

R

Č

Tabulka 3: Část údajů tabulky radian.

DILO	ALIAS	DRUH_DILA	CISLOVZ	U_LUM	U_CHEM	U_RADIO	RA_EKV_U	U_RTG_F	TH_RTG_F	U_GAMAS	RA_GAMASP	TH_GAMASP	K_GAMAS	KRR
B III 1		К	5502	1.3	-1	-1	1	-1	-1	-1	1	-1	-1	1
B III 2		к	5503	2.6	-1	-1	1	-1	-1	-1	1	-1	-1	-1
B III 3		К	5504	0.9	-1	-1	1	-1	-1	1	1	-1	-1	1
B III 4		к	5505	2.7	-1	-1	1	-1	-1	-1	1	-1	-1	-1
B III 5		К	5506	2.2	-1	-1	1	-1	-1	1	1	-1	-1	1
B III 6		к	5507	2	-1	-1	1	-1	-1	-1	1	-1	-1	-1
B III 7		к	5508	1.7	-1	-1	1	-1	-1	1	1	-1	-1	1
B III 8		к	5509	2	-1	-1	1	-1	-1	-1	1	-1	-1	-1
B III 9		к	5510	5.4	-1	-1	1	-1	-1	1	1	-1	-1	-1
B III10		к	5511	2.4	-1	-1	1	-1	-1	-1	1	-1	-1	-1
B III11		к	5512	3	-1	-1	1	-1	-1	1	1	-1	-1	1
B III12		к	5513	1.9	-1	-1	1	-1	-1	-1	1	-1	-1	-1
B V 2		к	5402	2	-1	-1	1	-1	-1	1	1	-1	-1	1
B V 3		к	5403	3	-1	-1	1	-1	-1	1	1	-1	-1	-1
B V 4		к	5404	1.9	-1	-1	1	-1	-1	1	1	-1	-1	1
B V 5		к	5405	1.9	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

Tabulka 4: Část údajů tabulky průzkumné vrty Polná.

DILO	HLOUBKA	UKLON	AZIM
PL-1	30.00	10.50	264
PL-1	50.00	13.50	271
PL-1	75.00	16.00	276
PL-1	100.00	18.50	280
PL-1	125.00	19.00	278
PL-1	150.00	19.50	279
PL-1	175.00	21.00	280
PL-10	0.10	25.00	250
PL-10	25.00	25.50	-1
PL-10	50.00	27.00	-1
PL-10	75.00	28.50	250
PL-10	100.00	31.00	255
PL-10	125.00	32.50	255
PL-10	150.00	35.00	260
PL-10	175.00	36.50	260
PL-10	200.00	37.00	265
PL-10	215.00	38.00	265
PL-100	0.10	5.00	230
PL-100	10.00	5.50	-1
PL-100	20.00	6.00	-1
PL-100	30.00	6.50	240
PL-100	40.00	7.25	240

Při zpracování těchto převzatých dat se vyskytly následující hlavní problémy:

- 1. Mnoho objektů nemělo údaje o metráži vzorků a u mnoha objektů neexistovaly analýzy uranu. *Řešení přijaté po konzultaci s pracovníky Diama s.p.:*
 - Bylo vytyvořeno makro *Kontrola_OBJEKT_krvzor* (viz [3]): Pokud objekt z tabulky *OBJEKT* není v tabulce *krvzor* (a neexistuje k němu tedy žádná analyzovaná metráž), podbarví se název díla (1. sloupec) v tabulce *OBJEKT* hnědě – celkem 242 objektů. Tyto objekty byly vyřazeny.
 - Bylo vytyvořeno makro *Kontrola_OBJEKT_radian* (viz [3]): Pokud objekt z tabulky *OBJEKT* není v tabulce *radian* (a neexistuje k němu tedy žádná analyzovaný vzorek uranu), podbarví se 2. sloupec *ALIAS* v tabulce OBJEKT modře celkem 264 objektů. Tyto objekty byly rovněž vyřazeny.
- 2. U objektů není vesměs uváděn úklon a v mnoha případech ani azimut (pouze kód, například -4 pro lomené chodby, šikmé a vertikální komíny).

Řešení přijaté po konzultaci s pracovníky Diama s.p.:

• Azimut -2: je svislé dílo směrem dolů. Celkem je 115 svislých děl.

- U objektů BR-1 až BR-35 byl určen jednotný úklon 5 stupňů směrem nahoru. Celkem existuje 33 děl Br...
- Azimut -4: U důlních děl (celkem 46 děl se vzorky) se musely doplnit lomové body. Digitalizaci provedl pracovník Diama s.p. do souboru *BRZKOV_SOURAD.xlsx* (ukázka viz tab. 5), u jednotlivých takto vzniklých úseček se vypočetl azimut a úklon nově vytvořeným makrem *Poc_kon_XYZ* (viz [3]) pro stanovení údajů inklinometrie úseků v souboru *BRZKOV_SOURAD.xlsm* (doplnění sloupců *xpoc* až *Azimut*) – ukázka viz tab. 6. Takto vzniklá "inklinometrie" se přidala k inklinometrii povrchových vrtů.
- Azimut -5: Tyto vrty by měly mít inklinometrii. Bylo vytyvořeno makro Kontrola_OBJEKT_inklino (viz [3]): Pokud k objektu z tabulky OBJEKT s azimutem -5 neexistuje inklinometrie, podbarví se Azimut (13. sloupec) v tabulce OBJEKT modře. U třech vrtů inklinometrie chyběla (vrty PL-6-GP, PL-7-GP a PL-8-GP), u nich bylo pracovníky Diama s.p. stanoveno: "Inklinometrie u vrtů PL-6-GP, 7-GP a 8-GP nebyla měřena, podle projektů však u všech těchto vrtů můžeme stanovit počáteční úklon 30° (od svislice) a azimut 270°". Celkem je 71 povrchových děl.
- U objektů se stanoveným azimutem a chybějícím úklonem bylo přijato následující řešení: typ objektu "Z" ("vrt šikmý nebo horizontální – podzemní") má úklon 5 stupňů, typy objektů "D" ("vodorovné n. šikmé díla") a "R" ("rýha") jsou vodorovné. Celkem je 148 takových děl.

Tabulka 5: Část údajů souboru BRZKOV_SOURAD.xlsx.

DILO	BOD	х	Y	Z	pozn
BR-LOM-3L	1	-656900.05	-1115606.51	542.1	povrch
BR-LOM-3L	2	-656895.34	-1115615.31	542.1	povrch
BR-LOM-3L	3	-656888.24	-1115621.74	542.1	povrch
BR-LOM-3L	4	-656886.02	-1115623.75	542.1	povrch
BR-LOM-3L	5	-656883.02	-1115630.84	542.1	povrch
BR-LOM-3L	6	-656882.31	-1115632.52	542.1	povrch
BR-LOM-3L	7	-656878.28	-1115639.28	542.1	povrch
BR-LOM-3L	8	-656861.45	-1115662.49	542.1	povrch
BR-LOM-3L	9	-656856.06	-1115667.49	542.1	povrch
BR1-30	1	-656798.10	-1115791.70	402.0	3.patro
BR1-30	2	-656791.10	-1115770.80	402.0	3.patro
BR1-30	3	-656790.68	-1115755.28	402.0	3.patro
BR1-30	4	-656792.43	-1115736.49	402.0	3.patro
BR1-30	5	-656794.00	-1115729.00	402.0	3.patro

Tabulka 6: Část údajů souboru BRZKOV_SOURAD.xlsm.

DILO	BOD	х		Y	Z	pozn	хрос	xkon	урос	ykon	zpoc	zkon	vzdal_xy	vzdal_xyz	delka_od	delka_do	Uklon_ink	Azimut
BR-LOM-3L	1	L -	656900.05	-1115606.51	542.1	povrch	-656900.0547	-656895.344	-1115606.51	-1115615.31	542.1	542.1	9.985649	9.985649	0	9.985649	90	151.8548
BR-LOM-3L	2	2 -	656895.34	-1115615.31	542.1	povrch	-656895.3444	-656888.236	-1115615.31	-1115621.74	542.1	542.1	9.585589	9.585589	9.985649	19.57124	90	132.1328
BR-LOM-3L	3	3 -1	656888.24	-1115621.74	542.1	povrch	-656888.2358	-656886.019	-1115621.74	-1115623.75	542.1	542.1	2.989569	2.989569	19.57124	22.56081	90	132.1339
BR-LOM-3L	4	1 -	656886.02	-1115623.75	542.1	povrch	-656886.0188	-656883.016	-1115623.75	-1115630.84	542.1	542.1	7.705591	7.705591	22.56081	30.2664	90	157.068
BR-LOM-3L	5	5 -	656883.02	-1115630.84	542.1	povrch	-656883.0164	-656882.306	-1115630.84	-1115632.52	542.1	542.1	1.824588	1.824588	30.2664	32.09099	90	157.069
BR-LOM-3L	6	5 -	656882.31	-1115632.52	542.1	povrch	-656882.3055	-656878.282	-1115632.52	-1115639.28	542.1	542.1	7.863165	7.863165	32.09099	39.95415	90	149.2193
BR-LOM-3L	7	7 -	656878.28	-1115639.28	542.1	povrch	-656878.2815	-656861.45	-1115639.28	-1115662.49	542.1	542.1	28.67517	28.67517	39.95415	68.62932	90	144.0571
BR-LOM-3L	8	3 -	656861.45	-1115662.49	542.1	povrch	-656861.4498	-656856.063	-1115662.49	-1115667.49	542.1	542.1	7.349715	7.349715	68.62932	75.97904	90	132.8723
BR-LOM-3L	9	9 -	656856.06	-1115667.49	542.1	povrch									75.97904	125.979	90	132.8723
BR1-30	1	L -I	656798.10	-1115791.70	402.0	3.patro	-656798.1	-656791.1	-1115791.7	-1115770.8	402	402	22.0411	22.0411	0	22.0411	90	18.51715
BR1-30	2	2 -1	656791.10	-1115770.80	402.0	3.patro	-656791.1	-656790.68	-1115770.8	-1115755.28	402	402	15.52568	15.52568	22.0411	37.56678	90	1.550152
BR1-30	3	3 -	656790.68	-1115755.28	402.0	3.patro	-656790.68	-656792.43	-1115755.28	-1115736.49	402	402	18.87132	18.87132	37.56678	56.4381	90	354.6791
BR1-30	4	1 -	656792.43	-1115736.49	402.0	3.patro	-656792.43	-656794	-1115736.49	-1115729	402	402	7.652777	7.652777	56.4381	64.09087	90	348.1615
BR1-30	5	5 -	656794.00	-1115729.00	402.0	3.patro	-656794	-656800.8	-1115729	-1115720	402	402	11.28007	11.28007	64.09087	75.37094	90	322.9269

Na obr. 4 je ukázka tabulky OBJEKT po zpracování bodů 1 a 2.

č

R

Program Centra kompetence

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9 11		n 1			P P	G N	-		v v	vv	X
Signed above Signed above<	* ¥ Y	*	Z ZAMER	AZIMU V D	ELKA * F	ROK UI - ORGAN	ORGAN * UCEL	C * ZPUSO	* GEOF + GEO	F_F + LOKALITA	▼ REG_GE *	STRAT_ DAT
17 BR-36 Z M3302A 2122 Z 18 BR-37 Z M3302A 2122 Z 19 BR-3 Z M3302A 2124 Z 19 BR-3 Z M3302A 2124 Z 19 BR-3 Z M3302A 2124 Z 18 BR-3 (J) // M 1830A 4024 Z Z 18 BR-3 (J) // M 1830A 2122 Z Z 18 BR-3 (J) // M 1830A 1222 Z Z 19 BR-3 (J) // M 1830A 1222 Z Z 19 BR-3 (J) // M 1830A 1222 Z Z 29 BR-3 (J) // M 1830A 1222 Z Z 29 BR-3 (J) // M 1830A 1222 Z Z 20 BR-3 (J) // M 1830A 1242 Z Z 20 BR-3 (J) // M 1830A 1242 Z Z 20 BR-3 (J) // BR1A-11A D M 1930A 1224 Z	1115722.00 -1115722.00	656739.50 -656739.5	0 297.00 V	-4	10.2	90 04	A		2	STOJ BRZKOV	A2	5 ###
119 119 <td>115550.00 -1115550.00</td> <td>656857.00 -656857.0</td> <td>0 273.50 V</td> <td>191</td> <td>120.0</td> <td>89 04</td> <td>A</td> <td>1</td> <td>1 2</td> <td>STOJ STRAZ.OBL-J</td> <td>A4</td> <td>5 ###</td>	115550.00 -1115550.00	656857.00 -656857.0	0 273.50 V	191	120.0	89 04	A	1	1 2	STOJ STRAZ.OBL-J	A4	5 ###
19 BR-30 Z M33072A 2124 Z 19 BR-30 Z M33072A 2122 Z Z 10 BR2A-SL/T MCBR2AS 0 M1392A 2122 Z Z 20 BR3A Z M1307AA 2122 Z Z Z 20 BR3A Z M1307AA 2122 Z	1115519.00 -1115519.00	656830.00 -656830.0	0 273.50 V	68	145.0	89 04	A	1	1 2	STOJ STRAZ.OBL-J	A4	5 ###
20 BH-20 Z MA3002A 2122 Z 21 BBA2-A177 MCREADD-50 MA3902A 2222 Z 21 BBA3 Z MA3002A 2222 Z Z 21 BBA3 Z MA3002A 2222 Z Z 21 BBA3 Z MA3002A 2222 Z Z 21 BBA3 Z MA3002A 2224 Z Z 21 BBA3 MB40 MA390A 2234 Z Z 21 BBA3 MB40 MA390A 2224 Z Z 21 BBA3 MB40 MA390A 2244 Z Z	116005.00 -1116005.00	656700.00 -656700.0	0 274.00 V	250	148.0	90 04	A	1	1 2	STOJ STRAZ.OBL-J	A4	5 ###
21 BR2A.31/7 MCBR2AS 0 M3392A 2222 2 23 BR2O-S1 MCBR2AS 0 M3392A 2222 2 23 BR2O-S1 MCBR2AS 0 M3392A 2222 2 24 BR2O-S1 MCBR2AS 0 M3392A 2222 2 25 BR3 2 M13092A 2222 2 2 25 BR3 2 M13092A 2222 2 2 26 BR3 2 M13092A 2222 2 2 28 BR3 2 M13092A 2222 2 2 29 BR3-M10 0 M1392A 2242 2 2 29 BR3-M22 0 M1392A 2242 2 2 29 BR3-M22 0 M1392A 2242 2 2 29 BR3-M22 0 M1392A 2242 2 2 2 <tr< td=""><td>1115429.50 -1115429.50</td><td>656879.50 -656879.5</td><td>0 273.50 V</td><td>256</td><td>120.0</td><td>90 04</td><td>A</td><td>1</td><td>1 2</td><td>STOJ STRAZ.OBL-J</td><td>A4</td><td>5 ###</td></tr<>	1115429.50 -1115429.50	656879.50 -656879.5	0 273.50 V	256	120.0	90 04	A	1	1 2	STOJ STRAZ.OBL-J	A4	5 ###
22 BR20-S0 MCBR02 0 M1392A M2222 2 23 BR20-S1/T MCBR02 0 M1392A M2222 Z 34 BR20-S1/T MCBR02 0 M1392A M2222 Z 36 BR30-S1/T MCBR02 0 M1392A M2222 Z 36 BR30-S1/T Z M13002A M2222 Z 36 BR30 Z M13002A M2222 Z 37 BR31 Z M13002A M2222 Z 38 BR30 Z M13002A M2222 Z 38 BR31 D M1302A M222 Z 39 BR31 D M1302A M222 Z 39 BR31 D M1302A M222 Z 39 BR31 BR31A M22 D M1302A M222 Z 39 BR31 BR31A M22 D M1302A M222 Z 39 BR31 BR31A M22 D M1302A M22 Z 39 BR31 BR31A M22 D M1302A M22 Z 39 BR31 BR31A M22 D M1302A M22 Z 39 BR31 BR31A M22	1115776.00 -1115776.00	656719.00 -656719.0	0 293.00 V	-4	19.8	90 04	A		2	STOJ BRZKOV	A2	5 ###
BRDS-01/L MCBRDD-0 M392A 2122 Z 23 BRD-01/L MCBRDD-10 M3192A 2122 Z 25 BR-3 2 M13002A 2124 Z 25 BR-3 2 M13002A 2124 Z 27 BR-31 2 M13002A 2122 Z 20 BR-50 2 M13002A 2122 Z 20 BR-51 2 M13002A 2122 Z 20 BR-50 0 M1302A 2122 Z 20 BR-50 0 M1302A 2124 Z 20 BR-50 0 M1302A 2124 Z 21 BR-51 0 M1302A 2124 Z 21 BR-50 0 M1302A 2124 Z 21 BR-50 0 M1302A <t< td=""><td>1115749.30 -1115749.30</td><td>656721.60 -656721.6</td><td>0 271.50 V</td><td>-4</td><td>1.8</td><td>90 04</td><td>A</td><td></td><td>2</td><td>STOJ BRZKOV</td><td>A2</td><td>5 ###</td></t<>	1115749.30 -1115749.30	656721.60 -656721.6	0 271.50 V	-4	1.8	90 04	A		2	STOJ BRZKOV	A2	5 ###
Description Mathematical Description Matrixe Status Z <thz< th=""> Z <thz< th=""> <thz< t<="" td=""><td>1115749.30 -1115749.30</td><td>656721.60 -656721.6</td><td>0 271.50 V</td><td>-4</td><td>19.1</td><td>90 04</td><td>A</td><td></td><td>2</td><td>STOJ BRZKOV</td><td>A2</td><td>5 ###</td></thz<></thz<></thz<>	1115749.30 -1115749.30	656721.60 -656721.6	0 271.50 V	-4	19.1	90 04	A		2	STOJ BRZKOV	A2	5 ###
25 88-3 Z M3092A 2124 Z 25 88-30 Z M3092A 2122 Z 27 88-31 Z M3092A 2122 Z 29 88-32 Z M3092A 2124 Z 29 88-33 Z M3092A 2124 Z 29 88-31 0 M3392A 2124 Z 31 88-31 0 M3392A 2124 Z 31 88-31 0 M3392A 2124 Z 31 88-30 0 M3392A 2124 Z 31 88-30 0 M3392A 2124 Z 35 88-80-0 0 M3392A 2124 Z 36 88-30 0 M3392A 2124 Z 39 88-4 Z M3092A 2124 Z 39 88-4 Z M3092A 2124 Z	1115734.00 -1115734.00	656733.00 -656733.0	0 293.00 V	-4	11.9	90 04	A		2	STOJ BRZKOV	A2	5 ###
39 81-30 2 MA3092A 2122 Z 39 81-30 2 MA3092A 2122 Z 30 81-32 2 MA3092A 2122 Z 30 81-32 2 MA3092A 2124 Z 30 81-30 MA3092A 2124 Z Z 30 81-30 MA3092A 2124 Z Z 30 81-30 MA3092A 2124 Z Z 30 81-30 MA392A 2124 Z Z	1115933.00 -1115933.00	656729.00 -656729.0	0 404.10 V	87	169.4	85 04	A	1	1	STOJ STRAZ.OBL-J	A4	5 ###
27 88-31 Z M3092A 212 Z 28 88-32 Z M3092A 212 Z 29 88-33 Z M3092A 212 Z 29 88-31 D M3392A 2124 Z 29 88-31 D M3392A 2124 Z 29 88-31 D M3392A 2124 Z 21 88-35 D M3392A 2124 Z 21 88-36 D M3392A 2124	1115876.00 -1115876.00	657014.00 -657014.0	0 272.00 V	278	285.0	90 04	A	1	1 2	STOJ STRAZ.OBL-J	A4	5 ###
20 BR-32 Z M3002A 2122 Z 30 BR-30 M6 0 M302A 2124 Z 30 BR-310 M6 0 M302A 2124 Z 30 BR-310 M6 0 M302A 2124 Z 30 BR-310 M6 0 M392A 2124 Z 30 BR-310 M6 0 M392A 2122 Z Z 30 BR-31A BR4A-31A BR4A-30 M392A 2124 Z Z 30 BR-31 BR4B-30 M392A 2124 Z Z 30 BR4B-30 BR4B-30 M392A 2124 Z Z 30 BR4B-31 BR4B-30 D M392A 2124 Z Z 30 BR4B-30 D M392A 2124 Z Z Z 30 BR4B-30 D M392A 2124 Z <td>1115331.00 -1115331.00</td> <td>656907.50 -656907.5</td> <td>0 274.00 V</td> <td>245</td> <td>155.0</td> <td>90 04</td> <td>A</td> <td>J</td> <td>1 2</td> <td>STOJ STRAZ.OBL-J</td> <td>A4</td> <td>5 ###</td>	1115331.00 -1115331.00	656907.50 -656907.5	0 274.00 V	245	155.0	90 04	A	J	1 2	STOJ STRAZ.OBL-J	A4	5 ###
29 86.3 Z M33092A 2122 Z 10 86.3 0 M33092A 2124 Z 11 86.3 0 M33092A 2124 Z 12 86.3.4 0 M33092A 2124 Z 13 86.3.4 0 M33092A 2124 Z 23 86.3.4 0 M33092A 2122 Z 13 86.8.4.50 0 M33092A 2124 Z 15 86.8.9.0 0 M33092A 2124 Z 15 86.8.9.0 0 M33092A 2124 Z 15 86.8.9.0 0 M33092A 2124 Z 16 86.8.0 0 M33092A 2124 Z 19 86.4 Z M3002A 2124 Z 19 86.4 Z M3002A 2124 Z 10 86.5 Z M3002A 2124	1115403.00 -1115403.00	656799.00 -656799.0	0 273.50 V	79	140.0	90 04	A	1	1 2	STOJ STRAZ.OBL-J	A4	5 ###
30 BR3-00 BR3-B0 0 M1392A 2134 2 30 BR3-31 BR3-31 0 M1392A 2122 2 30 BR3-31 BR3-31 0 M1392A 2124 2 30 BR3-31A BR3-31A 0 M1392A 2124 2 30 BR3-31A BR3-31A 0 M1392A 2124 2 30 BR3-31A BR3-31A 0 M1392A 2124 2 30 BR3-31 0 M1392A 2124 2 2 30 BR3-31 0 M1392A 2124 2 2 30 BR3-31 0 M1392A 2144 2 2 2 30 BR3-31 0 M1392A 2134 2 2 2 30 BR3-21 BR3-32 0 M1392A 2144 2 2 41 BR5 2 M13902A 2124	1115309.50 -1115309.50	656769.50 -656769.5	0 274.00 V	63	169.5	90 04	A	1	1 2	STOJ STRAZ.OBL-J	A4	5 ###
BBR-31 BBB-30 D MB302A 2324 Z 29 BBR-3/2:0 MB302A 2122 Z Z 33 BRA-30 BRA-30 MB302A 2122 Z 34 BRA-30 BRA-30 MB302A 2122 Z 35 BRA-30 BRA-30 MB302A 2124 Z 55 BRB-30 BRA-30 MB302A 2124 Z 56 BRB-30 BRA-30 MB302A 2124 Z 97 BRC-50 BRA-30 M1302A 2124 Z 98 BRA-30 BRA-30 M1302A 2124 Z 99 BRA-30 BRA-30 M1302A 2124 Z 99 BRA-30 BRA-30 M1302A 2124 Z 90 BRA-30 M1302A 2124 Z Z 91 BRA-5 Z M1302A 2124 Z 41 BRA-5 Z M1302A 2124 Z 42 BRA-5 Z M1302A 2124 Z 45 BRA-	1115892.90 -1115892.90	657256.80 -657256.8	0 402.90 V	-4	119.0	86 04	A		2	STOJ BRZKOV	A2	5 ###
22 BRA-7/2-2 MB3-02 0 M3392A 2122 2 33 BRA-30 BRA-31A BRA-31A M3392A 2122 2 34 BRA-31A BRA-31A BRA-31A M3392A 2124 2 36 BRA-31A BRA-31A BRA-31A M3392A 2124 2 36 BRA-31A BRA-31A BRA-31A BRA-31A M3392A 2124 2 36 BRA-31A BRA-31A BRA-31A BRA-31A M3392A 2124 2 36 BRA-31 BRA-31A BRA-31A BRA-31A M3392A 2124 2 38 BRA-21 BRA-31A BRA-31A M3392A 2124 2 39 BRA-3 2 M3392A 2124 2 2 30 BRA-50 PARA20 M3392A 2124 2 2 40 BRA Z M3392A 2 2 4 41 BRA Z M3392A 22 2 4 41 BRA Z M3392A 224<	1115895.70 -1115895.70	657264.90 -657264.9	0 402.90 V	-4	125.3	86 04	A		2	STOJ BRZKOV	A2	5 ###
33 (8 RA-30 0 M3392A 2122 2 34 (8 RA-31A) 0 M3392A 2122 2 35 (8 RA-30) 0 M3392A 2124 2 35 (8 RA-30) 0 M3392A 2124 2 36 (8 RA-30) 0 M3392A 2124 2 37 (8 RA-50) 0 M3392A 2124 2 38 (8 RA-51) 0 M3392A 2124 2 39 (8 RA-50) 0 M3392A 2124 2 39 (8 RA-50) 0 M3392A 2124 2 39 (8 RA-50) 0 M3392A 2124 2 40 (8 RA-50) 0 M3392A 2124 2 41 (8 RA-50) 0 M3392A 2124 2 42 (8 RA-50) 2 M33092A 2124 2 43 (8 RA-70) 2 2 2 2 44 (8 RA-10) 2 2 2 2 45 (8 RA-9) 2	1115774.00 -1115774.00	657298.30 -657298.3	0 403.70 V	-4	2.4	87 04	A		2	STOJ BRZKOV	A2	5 ###
34 (BR.3-31A BR.8-31A BR.3-31A BR.3-31A M.3392A 2122 Z 36 (BR.3-31 BR.3-31A D M.3392A 2234 Z 36 (BR.3-11 BR.3-31A D M.3392A 2234 Z 36 (BR.3-11 BR.3-31A D M.3392A 2234 Z 36 (BR.3-11 BR.3-31A D M.3392A 2234 Z 38 (BR.2-11 BR.3-31A D M.3392A 2234 Z 40 (BR.5-0 BR.490 O M.3392A 2234 Z 40 (BR.5-0 BR.490 O M.3392A 2244 Z 41 (BR.7 Z M.3392A 2244 Z Z 41 (BR.7 Z M.3392A 224 Z Z 45 (BR.5 Z M.3392A 224 Z Z 46 (BR.5 Z M.3392A 224 Z Z 47 (BR.5R.57.49 M.3287A 2322 Z Z	1115789.90 -1115789.90	657293.70 -657293.7	0 403.50 V	-4	276.0	86 04	A		2	STOJ BRZKOV	A2	5 ###
35 868-90 0 M392A 2124 Z 95 868-90 0 M392A 2124 Z 97 865.00 0 M392A 2124 Z 97 865.00 0 M392A 2124 Z 98 86.40 0 M392A 2124 Z 99 86.4 Z 0 M392A 2124 Z 99 86.4 Z 0 M392A 2124 Z 41 86.5 Z M3002A 2124 Z 42 86.5 Z M3002A 2124 Z 43 86.7 Z M3002A 2124 Z 45 86.9 Z M3002A 2124 Z 45 86.9 Z M3002A 2124 Z 46 86.4 Z M3002A 2124 Z 49 86.4 D M302A 2122	1115790.30 -1115790.30	657294.00 -657294.0	0 403.50 V	-4	43.0	86 04	A		2	STOJ BRZKOV	A2	5 ###
b6 (R18-31 0 M1392A 2124 Z b6 (R18-31 0 M1392A 2124 Z b7 (R15-10) 0 M1392A 2124 Z b8 (R15-11) 0 M1392A 2124 Z b8 (R15-11) 0 M1392A 2124 Z b0 (R14-50) 0 M1392A 2124 Z b1 (R14-50) 0 M1392A 2124 Z b2 (R14-50) 0 M1392A 2124 Z b2 (R14-50) 0 M1392A 2124 Z b2 (R14-50) 2 M1392A 2124 Z b1 (R14-50) 2 M1392A 2124 Z b1 (R14-50) 2 M1392A 2124 Z b1 (R14-50) 2 313072A 2124 Z b1 (R14-50) 2 313072A 2124 Z b1 (R14-50) M1392A 2122 Z 2 b1 (R14-50) 0	1115891.70 -1115891.70	657325.50 -657325.5	0 404.40 V	-4	18.0	86 04	A		2	STOJ BRZKOV	A2	5 ###
37 BR5-20 MB3-20 2124 2 39 BR3-21 D M3392A 2124 2 39 BR3-21 D M3392A 2124 2 39 BR4-4 Z M3392A 2124 2 40 BR5-5 Z M3392A 2124 2 41 BR5-6 Z M3392A 2124 2 43 BR5-7 Z M3392A 2124 2 44 BR5 Z M3392A 2124 2 45 BR5-7 Z M3392A 2124 2 45 BR5-8 Z M3392A 2124 2 46 BR5-9 Z M3392A 2124 2 47 BRCERTS-19 M4392A 2122 2 2 48 BR54L2 B M31992A 2122 2 2 49 BR1-12 B M13192A 2122 2	1115895.20 -1115895.20	657321.80 -657321.8	0 404.40 V	-4	21.0	86 04	A		2	STOJ BRZKOV	A2	5 ###
38 BR2-31 D M3192A 2124 Z 39 BR4 Z M3192A 2242 Z 40 BR-50 M6850 D M1392A 222 Z 40 BR-50 M3192A 2244 Z M3192A 224 Z 40 BR-50 M3192A 2244 Z M3192A 224 Z 40 BR-6 Z M3192A 224 Z Z 40 BR-7 Z M3192A 224 Z Z 40 BR-9 Z M3192A 2222 Z Z 41 BRC4NT-30 M3192A 2222 Z Z Z 40 BR4-12	-1115891.00 -1115891.00	657355.40 -657355.4	0 403.20 V	-4	62.0	86 04	A		2	STOJ BRZKOV	A2	5 ###
39 BH-4 Z M13092A 2124 Z 40 BH-5 D M13092A 2124 Z 41 BH-5 Z M13092A 2124 Z 42 BH-6 Z M13092A 214 Z 43 BH-7 Z M13092A 2124 Z 45 BH-7 Z M13092A 2124 Z 45 BH-7 Z M13092A 2124 Z 46 BH-8 Z M13092A 2124 Z 46 BH-9 M13092A 2124 Z Z 47 BECKERTS-P M13992A 2122 Z Z 49 BH-12 B M13992A 2122 Z Z 49 BH-12 B M13992A 2122 Z Z	1115894.40 -1115894.40	657350.20 -657350.2	0 403.20 V	-4	64.5	86 04	A		2	STOJ BRZKOV	A2	5 ###
40 BR-50 B 12192 2 2 40 BR-5 M33002A 224 2 41 BR-6 Z M33002A 224 Z 43 BR-7 Z M33002A 224 Z 44 BR-8 Z M33002A 224 Z 46 BR-9 Z M33002A 224 Z 47 BRCFRT-30 M1302A 224 Z 4 48 BR-9 Z M13002A 224 Z 4 47 BRCFRT-30 M1302A 2222 Z 4 4 48 BR-12 B M13002A 2242 Z 4 49 BR-12 B M13002A 2222 Z 2 4	1116009.00 -1116009.00	656762.00 -656762.0	0 404.50 V	262	131.1	85 04	A	J	1	STOJ STRAZ.OBL-J	A4	5 ####
41, BH-5 2 M13092A, 2124 Z 42, BH-6 X M13092A, 2124 Z 43, BH-7 Z M13092A, 2124 Z 44, BH-8 Z M13092A, 2124 Z 45, BH-7 Z M13092A, 2124 Z 45, BH-9 Z M13092A, 2124 Z 46, BH-9 M13092A, 2124 Z A 47, BRCCRTS-PP MIGUERFO, D M1392A, 2122 Z 49, BR-L12 B M13092A, 2122 Z 69, BH-12 BIL3 B M13092A, 2122 Z	1115404.00 -1115404.00	656810.20 -656810.2	0 272.50 V	-4	179.1	90 04	A		2	STOJ BRZKOV	A2	5 ###
42 BR-6 Z M13002A, 2124 Z 43 BR-7 Z M13002A, 2124 Z 44 BR-8 Z M13002A, 2124 Z 45 BR-9 Z M13002A, 2124 Z 46 BR-9A T M13002A, 2124 Z 47 BRC6RT-3P BR/DER/DF M13002A, 2122 Z 48 BR-9A UK37970 M1392A, 2122 Z 49 BR-12 BK M13002A, 2122 Z 49 BR-12 BK M13002A, 2122 Z	1115962.00 -1115962.00	656596.00 -656596.0	0 404.70 V	54	151.9	85 04	A	3	1	STOJ STRAZ.OBL-J	A4	5 ###
43 BH-7 Z M13092A 2124 Z 45 BH-8 Z M13092A 2122 Z 45 BH-9 Z M13092A 2124 Z 47 BRCERT-18P MIGUEX 0 M1392A 2122 Z 48 BRCERT-18P MIGUEX 0 M1392A 2122 Z 48 BRCERT-18P MIGUEX 0 M1392A 2122 Z 49 BRCERT-18P MIGUEX 0 M1392A 2122 Z 49 BRCERT-18P MIGUEX 0 M1392A 2122 Z 69 BR-12 B M1392A 2122 Z Z	1116089.00 -1116089.00	656732.00 -656732.0	0 404.70 V	253	152.3	85 04	A	1	1	STOJ STRAZ.OBL-J	A4	5 ###
44 BR-8 Z M33002A 2122 Z 44 BR-8 Z M33002A 2204 Z 46 BR-9 Z M33002A 2124 Z 47 BRCERST-3P BACCERST-9 M33002A 2122 Z 88 BRCERST-3P BACCERST-9 M33002A 2222 Z 69 BR-12 B M33002A 2222 Z 69 BR-12 B M33002A 2222 Z	1116088.00 -1116088.00	656719.00 -656719.0	0 404.60 V	81	177.2	85 04	A	1	1	STOJ STRAZ.OBL-J	A4	5 ###
Si S	1115659.00 -1115659.00	656801.00 -656801.0	0 403.60 V	53	208.4	85 04	A	1	1	STOJ STRAZ.OBL-J	A4	5 ###
46 BR-9A Z M33002A 2324 Z 47 BRCERST-5P BRCERSTO M3392A 2322 Z 43 48 BRCERST-SP BRCST/3 D M3392A 2322 Z 43 49 BRCL B M3392A 2322 Z 43 69 BR-12 B M3392A 2322 Z 2	1115893.00 -1115893.00	657311.00 -657311.0	0 404.20 V	269	136.6	85 04	A	J	1	STOJ STRAZ.OBL-J	A4	5 ###
BRCERST-3P BRCERPCH M3392A 2322 Z 48 BRCSRST-3P BRUSST/5 0 M3392A 2322 Z 49 BRU-12 0 M3392A 2322 Z Z 69 BRU-12 0 M3392A 2322 Z Z	1115893.00 -1115893.00	657311.00 -657311.0	0 404.40 V	269	235.3	85 04	A	1	1.1	STOJ STRAZ.OBL-J	A4	5 ###
BRCST/5 D M3392A 2322 Z 49 BRU-12 B M33092A 2322 Z 50 BR-1-12 B M3392A 2322 Z	1115892.00 -1115892.00	656890.00 -656890.0	0 397.60 V	-4	99.5	85 04	A		2	STOJ BRZKOV	A2	5 ###
49 BRJ-12 B M33092A 2322 Z 50 BR-J-12 B M3392A 2322 Z	1115837.50 -1115837.50	656871.60 -656871.6	0 270.80 V	-4	21.1	88 04	A		2	STOJ BRZKOV	A2	5 ###
50 BR-J-12 B M3392A 2322 Z	1115841.60 -1115841.60	656880.00 -656880.0	0 551.38 N	-2	300.5	83 04	A		2	STOJ STRAZ.OBL-J	A4	5 ###
	1115841.60 -1115841.60	656880.00 -656880.0	0 551.38 V	-2	300.5	88 04	A		2	STOJ BRZKOV	A2	5 ###
51 BRJ-III-1 D M3392A 2322 Z	1115765.30 -1115765.30	656700.50 -656700.5	0 402.20 V	-4	3.5	84 04	A		2	STOJ BRZKOV	A2	5 ###
52 BRJIII-1-1 D M3392A 2324 Z	1115963.60 -1115963.60	656596.80 -656596.8	0 403.60 V	-4	1.5	85 04	A		2	STOJ BRZKOV	A2	5 ###
53 BRJIII-1-2 D M3392A 2324 Z	-1116010.20 -1116010.20	656760.80 -656760.8	0 403.30 V	-4	1.8	84 04	A		2	STOJ BRZKOV	A2	5 ###
ti mne OBJEKT spektr Stat radian krvzor Objekt	Br Inklino Inklino_Sour	rad OBJEKT (2) Co	llars Samples	(+)		3 [4]						-

Obr. 4: Ukázka tabulky OBJEKT po zpracování bodů 1 a 2.

- 3. Chybějící a nesprávné údaje v inklinometrii vrtů (viz tab. 4).
 - Řešení přijaté po konzultaci s pracovníky Diama s.p.:
 - Opraveny hloubky 1. měření na 0 m (žlutě podbarveny v tabulce Trajectories viz níže). Azimuty s kódem -1 nahrazeny váženou (podle délek úseků) lineární interpolací azimutů
 - úseků nad a pod chybějícími údaji (žlutě podbarveny v tabulce Trajectories viz níže).
 - U několika vrtů byla jejich hloubka podstatně větší než údaje o inklinometrii (PL-13, • PL-187, PL-22, PL-197...) – u nich byla doplněna inklinometrie v konečné hloubce vrtů s úklonem a azimutem shodnými s posledním měřením.
 - Opraveny nalezené zjevné překlepy (zeleně podbarveny v tabulce Trajectories viz níže).

4. Metráže vzorků s různými obsahy uranu se překrývají. Řešení přijaté po konzultaci s pracovníky Diama s.p.:

- Bylo vytyvořeno makro Kontrola_navaznosti (viz [3]) pro zjištění porušení návaznosti. V mnoha případech je to způsobeno zápornou délkou vzorků (viz následující bod). U ostatních vzorků bylo rozhodnuto, že se budou překrývající vzorky průměrovat.
- 5. Záporné délky vzorků u záseků. Pracovníky Diama s.p. bylo sděleno: "Vzorky se odebíraly z čelby, která měla plochu cca 3x3 m, tzn., že každý vzorek odebraný z kteréhokoliv místa této čelby, měl stejnou metráž. U těchto "duplicitních" vzorků se délka díla udávala se zápornou hodnotou, což je logický nesmysl, ale mělo se tím vyjádřit jiné místo odběru ve stejné vzdálenosti od počátku díla." A také: "Zásekové vzorkování (stejně jako radiometrické vzorkování čeleb bylo prováděno vždy od levého boku k pravému boku."

Řešení přijaté po konzultaci s pracovníky Diama s.p.:

- V makru Udaje_Dila (viz dále) se při výpočtu souřadnic X, Y, Z středů úseku vzorků v dané metráži (viz 2.2.2) sečte metráž "záporných" vzorků a umístí se symetricky zleva doprava kolmo na osu díla podle vzrůstajícího čísla vzorku.
- 6. Obsahy uranu (viz tab. 3). Řešení přijaté po konzultaci s pracovníky Diama s.p.:

- Obsah uranu se nachází v tabulce *radian* celkem v 5 sloupcích. Do výpočtu použít U_LUM, není-li, pak U_CHEM, není-li, pak U_RADIO, není-li, pak U_RTG_F, není-li, pak U_GAMAS.
- Obsah uranu -8 (celkem u 26 vzorků). K tomu sdělení pracovníků Diama s.p.: "Kód -8, uvedený v databance pro obsah uranu znamená, že analýza byla provedena, avšak výsledky této analýzy nejsou dostupné" tyto údaje byly proto vyřazeny ze zpracování.

Další verifikace vstupních dat byla prováděna konfrontací s archivními materiály a také s pomocí vizualizace (ve 2D a ve 3D) a srovnáním s příslušnými archivními horizontálními a vertikálními řezy. Přitom byly zjištěny chyby, které byly způsobeny nejen překlepy souvisejícími s digitalizací archivních podkladů. Chybné údaje byly opraveny.

Do kopie souboru *Brzkov data ČSUP_xlsx* s názvem *Brzkov data ČSUP_F.xlsm* byly doplněny listy *Collars* (s údají o 415 objektech, které zůstaly z tabulky *OBJEKT*) a *Samples*. Makrem *Udaje_Dila* (viz [3]) se následně z tabulek *OBJEKT*, *krvzor* a *radian* naplnila tabulka *Samples*: z tabulky *krvzor* se podle názvu díla vyberou čísla vzorků s metrážemi od-do a délkou vzorku a z tabulky *radian* se podle čísla vzorku doplní obsah uranu. Celkem se v tabulce *Samples* vytvořilo 9375 vzorků různé délky. Na závěr činnosti makra *Udaje_Dila* (viz [3]) se vzorky utřídí podle 1. sloupce "ID" (název díla), 3. sloupce "To" (metráž do) a 3. sloupce "Cislo_vz" (čísla vzorku) z důvodu zpracování vzorků záporné délky (viz bod 5 výše).

Byl vytvořen soubor *Data_3_2018.xlsm*, do nějž byly ze souboru *Brzkov data ČSUP_F.xlsm* zkopírovány tabulky *Collars* (ukázka viz obr. 5) a *Samples* (ukázka viz obr. 6) a nově byla vytvořena tabulka *Trajectories* (ukázka viz obr. 7) na základě inklinometrie děl – viz bod 3 výše. Celkem existuje 4814 řádků údajů inklinometrie.

	А	В	С	D	E	F	G	н	1.1
1	ID	Easting	Northing	Elevation	Azimuth	Dip	Depth		
364	PL-83	-656687.64	-1114987.32	552.05	0	-90	650		
365	PL-84	-656725.21	-1114803.99	538.67	0	-90	652.8		
366	PL-8-GP	-657358.62	-1115759.54	534.01	270	-60	82.6		
367	PL-9	-656938.78	-1115796.81	550.15	0	-90	197.6		
368	BR10-51	-656785.5	-1115680	272.5		0	2		
369	BR1-30	-656798.10	-1115791.70	402		0	170		
370	BR1-31	-656791.8	-1115791.4	402	0	0	340.7		
371	BR1-50	-656803.79	-1115616.80	272	0	0	138.4		
372	BR1-51	-656791.8	-1115650.8	272.2	0	0	54		
373	BR1B-3/2-2	-656839.7	-1115623.3	402.6	261.17	72	58.2		dovrchní
374	BR1B-3/2-4	-656847.2	-1115507.7	403	193.4023	71.32713	21.8		dovrchní
375	BR1B-30	-656817.1	-1115659.8	402.4		0	273.8		
376	BR1B-50	-656841.7	-1115519.3	272.2	0	0	204.9		
377	BR1C-30	-656815.3	-1115649.1	402.4		0	65.4		
378	BR1D-30	-656840.6	-1115615.7	402.6	0	0	56.1		
379	BR1E-30A	-656719.5	-1116011.8	403.3	0	0	42		
380	BR1E-31	-656722.1	-1116041.8	403.4	0	0	4.6		
381	BR1F-30	-656804.6	-1115630.3	402.4	0	0	28.5		
382	BR1G-3/2-2	-656814.3	-1115616.5	402.4	79.59229	78.55136	33.2		dovrchní
383	BR1G-30	-656812.66	-1115619.21	402.4			17.4		
384	BR1H-30	-656816.5	-1115607	402.4		0	10.5		
385	BR1H-31	-656813.58	-1115610.26	402.4	0	0	22		
386	BR1I-30	-656810.41	-1115609.84	402.4	0	0	54.5		
387	BR1J-30	-656814.09	-1115603.35	402.4	0	0	71		
388	BR1J-50	-656791.2	-1115619.2	272	0	0	56.5		
389	BR1K-30	-656826.37	-1115557.96	402.6		0	15.3		
390	BR1K-50	-656839.6	-1115551.1	272.2	0	0	35		
391	BR1L-31	-656791.5	-1115794.5	402	0	0	13.7		
392	BR1M-31	-656790.5	-1115798.5	402	0	0	2.5		
393	BR1N-30A	-656930.1	-1115557.9	403.5	0	0	203.3		
394	BR1P-51	-656789.4	-1115672	272.5	0	0	20.8		
395	BR2-3/2-1	-656744.2	-1115805.5	402.4	205.4417	87.37	52.7		dovrchní
396	BR2-30	-656758.4	-1115769.3	402.1		0	39.6		
397	BR2-31	-656762.8	-1115775.3	402.1	0	0	100.8		
398	BR2-5/4-1	-656716.8	-1115774.2	271.5	152.1985	88.60322	21.2		dovrchní
399	BR2-5/4-2	-656736.3	-1115721.6	271.5	265.0032	85.11645	26.4		dovrchní
400	BR2-50	-656734.1	-1115754.1	271.4	0	0	160		
401	BR2-51	-656735.33	-1115758.74	271.4	0	0	253.7		
	<	Collars Trajector	ies Samples /	Analyzy	Analyzy_In	k Analy	zy_Teleso	Zaseky	Sachtice
Valle	erte cil a rticko	ěte kláveru Enter neho m	alte příkaz Vložit				_		

Obr. 5: Ukázka tabulky Collars.

	A	В	С	D	E	F	G	н	1	J	К
1	ID	From	То	U	U_LUM	U_CHEM	U_RADIO	U_RTG_F	U_GAMAS	Cislo_vz	Delka
391	BR1-30	138.2	138	6660		6660			6700	35972	-0.3
392	BR1-30	140.5	141	80		80			53.4	35973	0.
393	BR1-30	146.7	147	1580		1580			1560	35978	0.3
394	BR1-30	147.2	147	16400		16400			17300	35979	-0.3
395	BR1-31	2.2	2	70		70			53.4	35901	-0.2
396	BR1-31	1.8	2	50		50			25.6	35902	0.
397	BR1-31	2.2	2	140		140			107	35903	-0.2
398	BR1-31	2.2	2	20		20			8.6	35904	-0.3
399	BR1-31	7.8	8	110		110			90.9	35905	0.3
100	BR1-31	8.2	8	3770		3770			3780	35906	-0.3
101	BR1-31	8.2	8	60		60			31.6	35907	-0.3
102	BR1-31	11.2	11	20		20			14.1	35913	-0.3
103	BR1-31	10.8	11	40		40			25	35914	0.
104	BR1-31	11.2	11	3040		3040			3030	35915	-0.3
105	BR1-31	11.2	11	50		50			29.7	35916	-0.3
106	BR1-31	13.2	13	65.7					65.7	35932	-0.3
107	BR1-31	248.8	249	680		680			680	36046	0.3
108	BR1-31	251.9	252	460		460			440	36047	0.1
109	BR1-31	257.8	258	1550		1550			1530	36053	0.3
110	BR1-31	258.9	259	1470		1470			1480	36054	0.1
111	BR1-31	260.9	261	890		890			870	36055	0.1
112	BR1-31	261.9	262	1700		1700			1680	36056	0.1
113	BR1-31	268.9	269	790		790			770	36060	0.1
114	BR1-31	269.1	270	730		730			780	36083	0.9
115	BR1-31	274.3	272	430		430			420	36084	-2.3
116	BR1-31	272.1	272	100		100			88.8	36085	-0.3
117	BR1-31	273.8	274	410		410			390	36086	0.3
118	BR1-31	277.2	277	1720		1720			1790	36087	-0.3
119	BR1-31	276.8	277	730		730			780	36088	0.3
120	BR1-31	278.8	279	500		500			500	36089	0.3
121	BB-14	0	3.6	29.1	29.1					4157	3.6

Obr. 6: Ukázka tabulky Samples.

	Α	В	С	D	E	F
1	ID	MD	Azimuth	Inclination		
1824	PL-21	160.00	276.00	28.50		
1825	PL-21	180.00	275.00	29.00		
1826	PL-21	200.00	276.00	29.50		
1827	PL-21-GP	0.00	300.00	10.00		
1828	PL-21-GP	10.00	299.00	9.00		299
1829	PL-21-GP	20.00	298.00	11.00		298
1830	PL-21-GP	40.00	296.00	13.00		
1831	PL-21-GP	50.00	298.00	14.00		
1832	PL-21-GP	80.00	300.00	15.50		
1833	PL-22	0.00	265.00	20.00		
1834	PL-22	10.00	263.75	5.00		263.75
1835	PL-22	20.00	262.50	6.00		262.5
1836	PL-22	30.00	261.25	7.00		261.25
1837	PL-22	40.00	260.00	9.00		
1838	PL-22	50.00	260.00	10.00		
1839	PL-22	60.00	260.00	10.50		
1840	PL-22	70.00	260.00	11.00		
1841	PL-22	80.00	260.00	12.50		
1842	PL-22	90.00	260.00	13.50		
1843	PL-22	100.00	260.00	15.00		
1844	PL-22	110.00	260.00	17.00		
1845	PL-22	120.00	260.00	18.00		
1846	PL-22	130.00	260.00	18.00		
1847	PL-22	140.00	260.00	18.50		
1848	PL-22	150.00	260.00	19.50		
1849	PL-22	160.00	260.00	21.00		
1850	PL-22	170.00	260.00	22.00		
1851	PL-22	180.00	260.00	23.00		
1852	PL-22	190.00	260.00	23.50		
1853	PL-22	200.00	260.00	24.00		
1854	PL-22	210.00	260.00	24.00		
1855	PL-22	220.00	260.00	24.00		
1856	PL-22	230.00	260.00	24.50		
1857	PL-22	240.00	260.00	24.50		
1858	PL-22	250.00	260.00	24.50		
1859	PL-22	260.00	260.00	25.00		
1860	PL-22	270.00	260.00	25.00		
1861	PL-22	280.00	260.00	25.00		
) Co	llars Trai	ectories	Samples Analyz	Analyzy Ink	Analyzy Teleso
-*						/ //

Obr. 7: Ukázka tabulky Trajectories.

Tabulky *Collars*, *Trajectories* a *Samples* souboru *Data_3_2018.xlsm* se pak načítají a zobrazují programem *Voxler* (obr. 8) a jsou využívány i pro další zpracování.

Obr. 8: Zobrazení průzkumných děl s proporcionálním zobrazením uranu (ppm) ve vzorcích vstupujících do výpočtu (včetně povrchu) v prostředí Voxler.

2.2.2. Výpočet a vizualizace prostorové lokalizace vstupních dat

Opravené a doplněné vstupní údaje (geometrické parametry průzkumných děl a vzorky s obsahy uranu) se s pomocí speciálně vytvořeného makra *XYZ_data_Ink* (viz [3]) rozdělují po 10 cm úsecích (celkem 345133 úseků), prostorově se lokalizují (pokud má dílo inklinometrii, tak podle inklinometrie zadané v tabulce *Trajectories*, jinak podle azimutu a úklonu díla z tabulky *Collars*) ve středu každého úseku, ukládají se do listu *Analyzy_Ink* a zároveň se vytváří textový soubor pro vstup analýz do programů *Voxler* a *Move*. Ukázka údajů tabulky *Analyzy_Ink* je v tabulce 7.

Tabulka 7: Část údajů tabulky Analyzy_Ink.

1	х	Y	Z	U	ID	Hloubka
203	-656880	-1115841.6	340.23	50	BRJ-12	211.15
204	-656880	-1115841.6	340.13	50	BRJ-12	211.25
205	-656880.05	-1115841.6	339.98	6540	BRJ-12	0.05
206	-656879.95	-1115841.6	339.98	6540	BRJ-12	0.15
207	-656880.15	-1115841.6	339.88	20	BRJ-12	0.05
208	-656880.05	-1115841.6	339.88	20	BRJ-12	0.15
209	-656879.95	-1115841.6	339.88	20	BRJ-12	0.25
210	-656879.85	-1115841.6	339.88	20	BRJ-12	0.35
211	-656880	-1115841.6	338.13	800	BRJ-12	213.25
212	-656880	-1115841.6	338.03	800	BRJ-12	213.35
213	-656880	-1115841.6	337.93	800	BRJ-12	213.45
214	-656880	-1115841.6	332.53	19600	BRJ-12	218.85
215	-656880	-1115841.6	332.43	19600	BRJ-12	218.95
216	-656880	-1115841.6	332.33	19600	BRJ-12	219.05
217	-656880	-1115841.6	324.73	550	BRJ-12	226.65
218	-656880	-1115841.6	324.63	550	BRJ-12	226.75
219	-656880	-1115841.6	324.53	550	BRJ-12	226.85
220	-656880.1	-1115841.6	324.38	5360	BRJ-12	0.05
221	-656880	-1115841.6	324.38	5360	BRJ-12	0.15

TA ČR

Na obr. 9 je zobrazen výsledek zpracování vzorků záporné délky makrem XYZ_data_Ink pro vybraný úsek díla BR1-31 v prostředí Voxler.

Obr. 9: Výsledek zpracování vzorků záporné délky makrem XYZ_data_Ink pro vybraný úsek díla BR1-31 v prostředí Voxler (vlevo). Vpravo nahoře odpovídající vstupní údaje tabulky Samples, vpravo uprostřed odpovídající vstupní údaje tabulky Trajectories a vpravo dole výsledné údaje tabulky Analyzy_Ink.

Tabulka *Analyzy_Ink* je zdrojem údajů pro další zpracování: pro výběr dat pro tvorbu horizontálních a vertikálních řezů, pro statistické analýzy, vizualizaci ve 2D a 3D aj. Na obr. 10 zobrazeny lokalizované údaje obsahu uranu z tabulky *Analyzy_Ink* v prostředí *Voxler*.

Obr. 10: Lokalizované údaje obsahu uranu v prostředí Voxler.

2.2.3. Konstrukce 3D strukturního modelu

Ke konstrukci 3D strukturního modelu byla použita všechna dodaná data ke dni 10. 4. 2018. Jednalo se o důlní mapy uranového zrudnění ze čtyř hloubkových úrovní (455 m n.m., 427 m n.m., 402 m n.m. – III. patro, 272 m n.m. – V. patro), povrchovou geologickou mapu a 10 geologických řezů. Všechny tyto podklady dodané v *pdf* formátu byly georeferencovány a prostorově usazeny v softwarovém prostředí *Move 2018* (obr. 11). Z patrových map byly nadigitalizovány a následně prostorově zobrazeny vertikální a horizontální důlní díla. Pro tyto práce byl využit software *ArcGIS* a *Move*. Pro konstrukci 3D strukturního modelu byl použit výhradně program *Move*.

Všechny 10 cm úseky vzorků s analýzami uranu z tabulky *Analyzy_Ink* (viz 2.2.2) byly následně zobrazeny společně s důlními díly (obr. 12). Celkem se jednalo o 345 133 úseků vzorků. Pro snadnější orientaci a přehlednější zobrazení byly úseky vzorků rozděleny do 4 tříd podle obsahu uranu (1. třída 0-10 ppm, 2. třída 10-100 ppm, 3. třída 100-1000 ppm, 4. třída 1 000-200 000 ppm). Pro každou třídu byla zvolena odlišná barva a proporcionální zobrazení (obr. 12). Vynesením zmíněných dat do prostoru se ukázalo, že většina vrtů nezasahuje do zájmových rudních těles (Br0, Br1, Br2) a podstatná většina vzorků spadá do 1. třídy, tedy bezvýznamných obsahů uranu. Na základě těchto zjištění byl stanoven zájmový polygon (červený polygon – obr. 12), zaujímající hlavní část ložiskového zrudnění Br0, Br1 a Br2 a současně bylo rozhodnuto, že nadále se budou pro modelování využívat pouze třídy vzorků 2, 3 a 4.

Použitá povrchová geologická mapa a geologické řezy především zobrazují průběhy litologických rozhraní a tektonických poruch. Uranové zrudnění na nich zobrazeno není. Z geologické mapy byly nadigitalizovány strukturní data průběhu foliace. Z geologických řezů byly nadigitalizovány průběhy identifikovaných tektonických zón, na které jsou vázána zrudnění uranu (Br0, Br1, Br2). Z těchto prostorově usazených linií průběhu tří nejvýznamnějších tektonických poruch byly vymodelovány jejich strukturní plochy.

Program Centra kompetence

Obr. 11: Prostorově usazené patrové mapy ze čtyř výškových úrovní a geologické řezy.

Obr. 12: Prostorově zobrazená data uranového zrudnění z vrtů a důlních děl rozdělená do 4 tříd. 1. třída 0-10 ppm U (světle modré body), 2. třída 10-100 ppm U (zelené body), 3. třída 100-1 000 ppm U (oranžové body), 4. třída 1 000-200 000 ppm U (červené body). Stanovený zájmový polygon je zobrazen červenou barvou.

Z důlních map (čtyři výškové úrovně) byly nadigitalizovány hranice dosahu jednotlivých těles uranového zrudnění. Z prostorového zobrazení všech dodaných a digitalizovaných dat je zřejmé, že tělesa uranového zrudnění jsou vázána přibližně na tektonické poruchy, nicméně zasahují do okolních hornin v závislosti na míře jejich alterace. Většina těles má generelní průběh shodný s významnými tektonickými zónami SSZ-JJV. Tělesa často vykliňují nebo se propojují. Propojení většiny těles je vázáno na struktury směru S-J, místy SSV-JJZ. Celkově lze morfologii těles zhodnotit jako soubor různě velkých plochých přibližně vertikálně orientovaných čoček, které se místy propojují.

Z charakteru zpracovávaných dat je zřejmé, že nelze jednotlivě modelovat každé digitalizované těleso zrudnění uranu z důlních map. Navíc data vzorků uranového zrudnění často leží mimo vymapované

zrudnění (obr. 13). Proto bylo rozhodnuto, že blízká tělesa se spojí a odlehlá malá tělesa se modelovat nebudou. Současně bylo rozhodnuto, že modelované těleso je zjednodušené a zahrnuje data přilehlých vzorků zrudnění. Také platí, že modelované těleso je generelně vázáno na modelované tektonické zóny, má přibližně tvar ploché vertikálně orientované čočky, která se propojuje s jinými čočkami, a společně vytvářejí složité těleso připomínající žilník. Proto se nebudou modelovat tělesa vázaná pouze na bodové vzorky obsahu uranu, zvláště pak pokud neodpovídají průběhu tektonických poruch či foliaci. V zájmovém polygonu bylo vybráno celkem 10 těles uranového zrudnění různé velikosti a složitosti. Vzhledem k významné odlehlosti dat především mezi III. a V. důlním patrem (130 m) se většina těles nepropojuje. Pouze jedno těleso prochází od povrchu přes všechna důlní patra až do hloubky 210 m n. m. (obr. 14).

Obr. 13: Pozice vzorků uranového zrudnění (červené křížky), důlní činností vymapovaného zrudnění v úrovni 427 m n. m. (oranžová linie), průběh dvou tektonický zón (modré linie) a vytvořených obvodových polygonů dvou modelovaných těles (červené a fialové linie).

Model uranového zrudnění vznikal postupně od jednodušších variant po komplikovanější. Každé zpracovávané těleso se modelovalo zvlášť, ale stejným postupem. První verze modelu každého tělesa byla velmi jednoduchá a sloužila především pro prostorovou kontrolu, zda všechny bodové hodnoty vzorků uranu jsou obsaženy uvnitř daného tělesa.

Na počátku modelování se vycházelo z výškové úrovně, kde se vyskytovalo nejvíce dat, tedy III. a V. patro. Zde byly vytvořeny obvodové polygony všech jednotlivých těles podle předem stanovených pravidel - viz výše (obr. 13). Tyto polygony se následně překopírovaly do okolních výškových sekcí (horizontálních řezů). Výškový krok sekcí byl stanoven na 10 m. V každé sekci byl zobrazen průběh významných tektonických poruch Br0, Br1 a Br2. Pokud do sekce zasahovala data z vrtů, byla také zobrazena. Překopírované polygony byly upraveny tak, aby odpovídaly průběhu a pozici tektonických poruch. Současně byla upravena také jejich velikost. Musel být dodržen tvar čočky, která zahrnuje blízká vrtná data uranového zrudnění. S ohledem na okolní data v sekcích se následně jednotlivá dílčí tělesa propojovala či štěpila. Uprostřed jednoho z těles takto vzniklo těleso bez zrudnění.

Obr. 14: Pozice vzorků uranového zrudnění tříd 2 - 4, vertikálních a horizontálních důlních děl a deseti modelovaných těles uranového zrudnění. Svým rozsahem největší modelované těleso procházející z povrchu až do hloubky 210 m n. m. je vyznačeno červeně.

Tímto postupem byly vytvořeny horizontální vertikálně odsazené obvodové polygony všech těles s krokem 10 m (obr. 15). Vznikla prostorová představa průběhu jednotlivých těles v prostoru. Bohužel použitý software *Move* neumožňuje vymodelovat takto komplikované plochy najednou. Bylo nutné rozdělit (rozpojit) jednotlivé linie na dílčí úseky. Zvlášť konkávní a konvexní křivky. Tyto dílčí křivky nad sebou v jednotlivých sekcích byly použity pro tvorbu dílčích mashů. Pro jejich konstrukci bylo zvoleno propojení pomocí B-splainu, protože vytvořené plochy lépe tvarově korespondovaly s představou celkového tvaru modelovaných těles. Zvolenou interpolační metodou byly vytvořeny všechny dílčí mashe, které následně byly spojeny v jeden mash reprezentující jedno těleso zrudnění.

Vzhledem k charakteru interpolační metody v některých místech došlo k takovému zakřivení plochy, že bodové hodnoty vzorů uranového zrudnění se dostaly mimo modelované těleso. V těchto místech bylo nutné upravit rozsah obvodových polygonů v okolních sekcích a proces tvorby mashe opakovat.

Popsaným postupem byl vytvořen 3D strukturní model deseti těles uranového zrudnění (obr. 16). Jak již bylo zmíněno dříve, pouze jedno těleso (červené těleso E - obr. 14) prochází od povrchu přes všechna patra až do hloubky 210 m n. m. V tomto tělese se nachází nejvíce vzorků uranu ve třídách 2 – 4 a to v pěti výškových úrovních (přípovrchová data z rýh a sond, data z důlních děl hloubkových úrovní 455 m n. m., 425 m n. m., 402 m n. m. – III. patro a 272 m n. m. V. patro). Vzhledem k prostorovému rozsahu bylo toto těleso vybráno pro další demonstraci metodického postupu modelování obsahu uranu.

Zájmové těleso E bylo následně rozřezáno do sekcí (horizontálních řezů) po 10 m. Vzniklo celkem 37 výškově odsazených polygonů (obr. 15). Vzhledem ke komplikované morfologii tělesa vzniklo na

některých výškových úrovních více polygonů. Vzniklé polygony byly exportovány v podobě *shp* souborů. Software *Surfer*, který byl použit pro tvorbu technologického modelu, umí tento formát načíst a dále s ním pracovat.

Obr. 15: Pozice po 10 m horizontálně odsazených obvodových polygonů modelovaných těles.

Obr. 16: Strukturní model zachycující deset modelovaných těles uranového zrudnění, důlní díla a průběhy významných zlomových zón (modré plochy).

2.2.4. Výpočet topologie 3D gridu tělesa uranu podle 3D strukturního modelu

Celkem 37 obvodových polygonů tělesa E uranu (viz 2.2.3) vyexportovaných ze strukturního modelu ve výškových úrovních 220 až 550 m n.m. s krokem 10 m ve formátu *shp* (viz 2.2.3) bylo v prostředí *Surfer* převedeno do formátu *bln* (výškové úrovně 430, 440 a 450 m n.m. obsahují dva obvodové polygony). Souřadnice X a Y byly v *shp* souborech zapisovány s přesností na 11 desetinných míst. Přitom souřadnice prvního a posledního bodu polygonu nebyly totožné, liší se na posledních místech. Proto bylo vytvořeno makro *BlnDat* (viz [3]), které souřadnice zaokrouhlí na 3 desetinná místa a také vytváří textový soubor pro vykreslení čísel bodů polygonu (viz 2.2.6) v prostředí *Surfer*. Vzniknou tak soubory *XXXmm.bln* a *XXX.dat*, kde *XXX* je postupně 220, 230, ...,430_a, 430_b, ... 550. V tabulce 8 je část souboru *500.mm.bln* a v tabulce 9 část souboru *500.dat*. Na obr. 17 jsou všechny polygony (soubory *XXXmm.bln*) zobrazeny – od 220 do 310 m n.m. zeleně (od světlého po tmavý odstín), od 320 do 390 m n.m. modře (od světlého po tmavý odstín), a od 510 do 550 m n.m. šedou barvou (od světlého po tmavý odstín).

Tabulka 8: Ukázka části souboru 500mm.bln.

197,0 "#ff0000" -656847.4,-1115679.979 -656847.101,-1115680.933 -656847.333,-1115680.719 -656848.025,-1115679.996 -656849.407,-1115679.269 -656849.407,-1115678.551 -656850.109,-1115677.838 -656850.801,-1115677.117 -656851.505,-1115676.407 -656852.214,-1115675.701 Tabulka 9: Ukázka části souboru 500.dat.

-656847.4,-1115679.979,1 -656847.101,-1115680.933,2 -656847.333,-1115680.719,3 -656848.025,-1115679.996,4 -656848.711,-1115679.269,5 -656849.407,-1115678.551,6 -656850.109,-1115677.838,7 -656850.801,-1115677.117,8 -656851.505,-1115676.407,9 -656852.214,-1115675.701,10

Protože pro tvorbu 3D gridů technologických parametrů musí vstupovat pouze hodnoty, které leží uvnitř tělesa uranu, byly makrem *Vyber_Teleso* (viz [3]) z tabulky *Analyzy_Ink* vybrány pouze tyto hodnoty a zapsány do tabulky *Analyzy_Teleso*. Tabulka *Analyzy_Teleso* bude zdrojem vstupních údajů pro vytváření 3D gridů technologických parametrů tělesa uranu. Z tabulky 10 (výstup makra *Vyber_Teleso*) je zřejmé, že v tělese je pouze 1895 10 cm úseků s analýzami uranu (viz také obr. 18). Hodně 10 m úrovní je také bez údajů. Aby se pokrylo celé těleso, bude nutná značná extrapolace při vytváření 3D gridu obsahu uranu (viz část 2.2.6).

Obr. 17: Obvodové polygony tělesa E uranu vyexportované ze strukturního modelu ve výškových úrovních 220 až 550 (od světle zelené, přes tmavě zelenou, modrou, fialovou, červenou až po černou) s krokem 10 m.

Uroveň m n.m.	Počet	Uroveň m n.m.	Počet
220	0	390	0
230	0	400	286
240	0	410	12
250	0	420	61
260	17	430	52
270	151	440	0
280	0	450	24
290	0	460	5
300	0	470	93
310	0	480	0
320	0	490	0
330	0	500	0
340	0	510	0
350	0	520	0
360	0	530	0
370	0	540	247
380	0	550	947
		Celkem:	1895

Tabulka 10: Počty 10 cm úseků s analýzami uranu ve výškových úrovních 220 až 550 m n.m. s krokem 10 m.

Obr. 18: Vybrané 10 cm úseky s analýzami uranu uvnitř tělesa.

Program Uran_Teleso (viz [3]), modul Výpočet topologie 3D gridu tělesa, vytváří 3D grid topologie tělesa se zadanou hustotou (1*1*1 m se souřadnicí Z od 215.5 m n.m. po 554.5 m n.m.) ve formě textového souboru Teleso_3D_grid.dat. K tomu jsou využívány právě obvodové polygony tělesa uranu vyexportované ze strukturního modelu ve výškových úrovních 220 až 550 m n.m. s krokem 10 m ve formátu bln. Při zpracování posledního horizontu (3D grid v úrovních od 545.5 m n.m.) se zachovají jen ty hodnoty, které nepřekročí nadmořskou výšku povrchu (viz [3]). Maximální Z souřadnice gridu je tak 552.5 m n.m. Na obr. 19 je takto vytvořené těleso uranu zobrazeno v prostředí Voxleru.

Obr. 19: Zobrazení topologie tělesa uranu v prostředí Voxler.

Před spuštěním programu *Uran_Teleso* se vytvoří pracovní adresář, kde se umístí spustitelný tvar programu (*Uran_Teleso.exe*), inicializační soubor (v textu *Uran_Teleso_init.dat* - viz [3]) a grid povrchu (soubor *BrzkovDEM10_teleso.grd*). Pro různé varianty modelování se může vytvořit více pracovních adresářů a také více inicializačních souborů.

Na obr. 20 je úvodní okno programu po spuštění. Na obr. 21 je okno programu pro zadání vstupních parametrů.

Obr. 20: Úvodní okno programu Uran_Teleso po spuštění.

Program Centra kompetence

N			
💢 Výpočet podle zadaných vstupních parametrů	-		×
– Vyberte inicializační vstupní soubor Uran_Viz_init*.dat):			
d: [DATADRIVE1]	at		
СК			
Carl Programy			
Gridu			
Gridy_10_bodu			
Vybraný inicializační soubor:			
D:\CK\Programy\Brzkov\Uran_Teleso_init.dat			
Vstupní parametry			
Topologie tělesa uranu bude vytvořena od 215.5 po 554.5 m n.m. s krok	em 1 m		
Horizontální řezy - parametry vizualizace			
Zmin (m n.m.): 215.5 Zmax (m n.m.): 552.5			
Spodní XZ (JTSK): 1115700 Vzdálenost mezi řezv XZ (m): 10	Počet	18	
	D-1-1	12	
Levy YZ (JTSK): 600000 VZdalenost meži rezy YZ (m): 10	Pocet:	13	
Vykreslovat vrty do vzdalenosti od rezu (m): 5			
		Vstup	ок
		<u>C</u> ancel	

Obr. 21: Okno programu Uran_Teleso pro zadání vstupních parametrů.

Přitom je požadována kontrola vstupních parametrů adresářů a souborů zadaných v inicializačním souboru (obr. 22) a také parametrů pro odhad zásob a vizualizaci (viz 2.2.7, 2.2.8 a 2.2.9), obr. 23.

Kontrola vstupních souborů	×
Vstupní soubor dat: D:\CK\Brzkov\1_2018\Data_3_2018.xIsm Složka s gridy (export Gridder Voxleru): D:\CK\Programy\Brzkov\Grid Složka s bin (obvody tělesa v horizontech): D:\CK\Brzkov\1_2018\Honza_23_4_18	y
Pokud naleznete chybu, ukončete program a opravte inicializační soubor!	
(<u> </u>	

Obr. 22: Kontrola vstupních parametrů adresářů a souborů.

Kontrola vstupních parametrů	×
Xmin: -656909	
Xmax: -656776	
Ymax: -1115514	
Zmin: 220	
Zmax: 550	
Objemova hmotnost: 2100 kg/m3 Man units per om pro horizontální 20 many: 25	
Map units per cm X pro vertikální řezy: 20	
Map units per cm Y pro vertikální řezy: 2	
Pokud naleznete chybu, ukončete program a opravte inicializači soubor!	ní
OK	

Obr. 23: Kontrola vstupních parametrů pro odhad zásob a vizualizaci.

Po zadání vstupních parametrů (obr. 21) a stisknutí tlačítka $Vstup \ OK$ se zobrazí tlačítka pro spuštění jednotlivých modulů programu (obr. 24).

💢 Výpočet podle zadaných		_		Х						
 Vyberte inicializační vstupní sou 	·Vyberte inicializační vstupní soubor Uran_Viz_init*.dat):									
d: [DATADRIVE1]	Uran_Teleso_	init.d	at							
🔄 D:\	^									
CK										
Brzkov										
🚞 Gridy										
Gridy_10_bodu	×									
Vybraný inicializační soubo	NI Tologo isin dan									
D: \LK\Programy\Brzkov\U	ran_ i eleso_init.dat									
Vstupní parametry										
Topologie tělesa uranu bude vy	tvořena od 215.5 po 554.5 m n.m. s :ti	krok	em 1 m							
Zmin (m n.m.); 215.5	2max (mmm); [552.5									
– Vertikální řezy - parametry vizu	alizace									
Spodní XZ (JTSK): 111570	0 Vzdálenost mezi řezy XZ (m): □	10	Počet:	18						
Levý YZ (JTSK): 65690	0 Vzdálenost mezi řezy YZ (m):	10	Počet:	13						
Vykreslovat vrty do vzdálenos	ti od řezu (m): 5									
				Vstu	р <u>О</u> К					
		1								
Výpočet topologie 3D gridu tělesa	Výpočet hodnot 3D gridu tělesa odbad zásob	۰	Výpo aridu	očet hodn u tělesa v	INNR					
		_	gnac		<u></u>					
Vykreslení <u>h</u> orizontálních řezů	Vykreslení zadaných vertikálních ř	ezů		<u>C</u> ancel						
Zauanych vistev	~~~~~~~									

Obr. 24: Okno programu Uran_Teleso po potvrzení vstupních parametrů.

Program Uran_Teleso obsahuje pět modulů:

- 1. Výpočet topologie 3D gridu tělesa uranu podle 3D strukturního modelu (tlačítko "Výpočet topologie 3D gridu tělesa") viz 2.2.4.
- 2. Odhad zásob na základě 2D gridů obsahu uranu a jejich převedení do 3D gridu (tlačítko "Výpočet hodnot 3D gridu tělesa, odhad zásob") viz 2.2.7.
- Odhad zásob na základě 2D gridů obsahu uranu a jejich převedení do 3D gridu (tlačítko "Výpočet hodnot 3D gridů tělesa v NNR") – viz 2.2.7.
- 4. Vizualizace horizontálních řezů ve 2D v prostředí *Surfer* (tlačítko "Vykreslení horizontálních řezů zadaných vrstev") viz 2.2.8.
- 5. Vizualizace sítě vertikálních řezů ve 2D v prostředí *Surfer* (tlačítko "Vykreslení zadaných vertikálních řezů XZ a YZ") viz 2.2.9.

2.2.5. Základní statistické zpracování obsahu uranu

Základní statistické zpracování je prováděno v prostředí *SGeMS* (viz část 1). Makro *GSLIB_vystup* (viz [3]) provádí převod potřebných údajů do formátu *GSLIB* (Deutsch, C., V., Journel, A., G, 1998) z tabulky *Analyzy_Teleso* pro zpracování v programu *SGeMS*. V tabulce 11 je ukázka části takto vzniklého souboru. Po jeho načtení do prostředí *SGeMS* lze tyto údaje vizualizovat (obr. 25), provádět základní statistické rozbory a případně provádět i jiná geostatistická zpracování. Na obr. 26 jsou histogramy četností obsahu uranu všech vstupních dat a vybraných dat uvnitř tělesa spolu s jejich charakteristikami.

...

Tabulka 11: Ukázka části souboru Teleso_Uran_GSLIB.dat ve formátu GSLIB pro vstup do prostředí SGeMS. Teleso_Uran

6								
Х								
Y								
Z								
U								
Hloubka								
Z								
-656797	.6 -1	11156	52.50	5 261	1 800	0 0.	05 2	61
-656797	.51 -	-1115	652.5	53 26	61 80	000 0	.15	261
-656797	.42 -	-1115	652.4	19 20	61 23	30 0.	25 2	61
-656797	.32 -	-1115	652.4	15 26	61 23	30 0.	35 2	61
-656797	.23 -	-1115	652.4	11 20	61 80	0 0.	45 2	61
-656797	.14 -	-1115	652.3	38 26	61 80	00.0	55 2	61
-656800	.76 -	-1115	644.0	08 26	61 48	30 10	.05	261
-656800	.8 -1	11156	43.99	9 261	1 480) 10.	15 2	61
-656802	.11 •	-1115	640.7	74 20	61 14	440 1	3.65	261
-656802	.15 -	-1115	640.0	65 26	61 14	440 1	3.75	261
-656802	.71 -	-1115	639.2	26 26	51 89	90 15	.25	261

Obr. 25: Zobrazení vstupních dat tělesa uranu v prostředí SGeMS.

Obr. 26: Ukázka statistického zpracování v prostředí SGeMS - histogram četností úseků obsahu uranu (ppm) a základní statistické charakteristiky (vlevo ze všech dat, vpravo vybraná data uvnitř tělesa).

V další části je prováděna regresní analýza závislosti obsahu uranu na Z (m n.m.). Analýza všech dostupných úseků obsahu uranu vykazuje téměř nulovou lineární závislost na Z (obr. 27). Těsnější lineární závislost na Z vykazuje analýza vybraných úseků obsahu uranu uvnitř tělesa s koeficientem korelace -0.174103 (obr. 28), která je ale přitom slabá. Z obou obrázků je spíše vidět rozložení dostupných dat v ose Z.

Obr. 27: Ukázka statistického zpracování v prostředí SGeMS – lineární závislost obsahu uranu (ppm) na Z (m n.m.) všech dostupných úseků obsahu uranu a základní statistické charakteristiky.

Obr. 28: Ukázka statistického zpracování v prostředí SGeMS – lineární závislost obsahu uranu (ppm) na Z (m n.m.) úseků obsahu uranu uvnitř tělesa a základní statistické charakteristiky.

2.2.6. Zobrazení vstupních dat ložiska uranu ve 3D v prostředí Voxler, stanovení elipsoidů anizotropie a výběru dat, vytvoření 3D gridů obsahu uranu a export 2D gridů v jednotlivých horizontech ve formátu Surfer.

Pro spolehlivý odhad hodnot 3D gridu geologického tělesa by mělo být těleso <u>pravidelně a přitom hustě</u> <u>ovzorkováno</u> (Journel, Kyriakidis, 2004), což v tomto případě zjevně není splněno (viz obr. 18). V některých částech tělesa uranu vstupní data vůbec nejsou (například v horizontálních úrovních od 280 do 390 m n.m. nebo v horizontálních úrovních od 480 do 540 m n.m. – viz obr. 28).

Na základě takových řídkých a nepravidelně rozmístěných vstupních dat nelze provést prostorovou geostatistickou strukturální analýzu, nelze tak vytvořit variogram a jeho model, a proto také nelze použít nějakou geostatistickou interpolační metodu – ať už krigování nebo simulace (Goovaerts, 1997). Z těchto důvodu se pro prostorovou interpolaci používá metoda inverzních vzdáleností - IDW (Staněk, 2005). Tato metoda má jednu výhodu – interpolované hodnoty jsou vždy v intervalu od minima do maxima vstupních hodnot (Staněk, 2005).

Hustota 3D gridu byla vzhledem k velikosti tělesa a hustotě vstupních dat zvolena 1*1 *1 m. Každý bod 3D gridu je pak umístěn ve středu bloku o rozměrech 1*1*1 m a jeho hodnota pak představuje průměrnou hodnotu obsahu uranu tohoto bloku. V oblastech vzorkování se tak může stát, že uvnitř bloku je několik různých vstupních hodnot (10 cm úseků), což v těchto případech vede ke zprůměrování obsahu uranu v bloku.

Pro vytvoření 3D gridu obsahu uranu v tělese je nutno stanovit elipsoid anizotropie a výběru vstupních dat. Přitom lze parametry elipsoidu anizotropie a výběru vstupních dat nastavit různým způsobem, různě lze také nastavit parametry gridování tělesa uranu (mocnost – power vzdálenosti pro vážený průměr, počet nejbližších vstupních hodnot pro výpočet apod.). Tyto parametry lze nastavovat variantně a získávat tak různá variantní řešení. V tomto dokumentu jsme zvolili metodu inverzních vzdáleností s elipsoidem anizotropie a výběru dat se směrem po tělese uranu (přesněji níže) s délkami os nastavenými také s ohledem na to, aby interpolované hodnoty pokryly těleso uranu. Elipsoid anizotropie a výběru dat má proto nastaveny délky os 80 m (první), 50 m (druhá) a 3 m (třetí).

Zobrazení vstupních dat tělesa uranu (z částí 2.2.1, 2.2.2 a 2.2.4) a 3D gridování je realizováno v prostředí *Voxler* (soubor *3D_Grid.voxb*, obr. 29). Vstupní data lze zobrazit buď všechna (obr. 7), nebo jen vstupní data uvnitř tělesa uranu (obr. 18, 29).

Obr. 29: Zobrazení vstupních dat tělesa uranu v prostředí Voxler.

Z obr. 17 a 19 je patrné, že těleso uranu lze podle souřadnice Z rozdělit na dva hlavní směry:

- Ve výškových úrovních od 220, 230 a 240 m.n.m. má elipsoid anizotropie a výběru dat směr 219° (azimut 231°) a úklon 48 stupňů po tělese uranu. Nastavení parametrů gridovacího objektu *Gridder* je na obr. 30 (parametry elipsoidu anizotropie a parametry IDW), na obr. 31 (parametry geometrie gridu) a na obr. 32 (parametry elipsoidu výběru vzorků pro interpolaci).
- Ve výškových úrovních od 250 m n.m. až po povrch má elipsoid anizotropie a výběru dat směr 199° (azimut 251°) a úklon 74 stupňů po tělese uranu. Nastavení parametrů gridovacího objektu *Gridder* je na obr. 33 (parametry elipsoidu anizotropie a parametry IDW), na obr. 34 (parametry geometrie gridu) a na obr. 35 (parametry elipsoidu výběru vzorků pro interpolaci).

Na obr. 36 je zobrazen výsledný 3D grid distribuce uranu.

Dále se provede export 2D gridů z objektů *Gridder* (příkaz *Save Data*) ve formátu *grd* (*Surfer*) jednotlivých horizontálních vrstev obsahu uranu (s názvem $U_XXX.grd$, kde XXX je pořadí vrstvy) do adresáře určeném v inicializačním souboru *Uran_Teleso_init.dat* ($D:\langle CK \rangle Programy \langle Brzkov \rangle Gridy$) pro další zpracování programem *Uran_Teleso* ([3]). V tomto adresáři pak budou uloženy soubory všech 338 vrstev $U_001.grd$ až $U_030.grd$ z objektu *Gridder_pod 250 a U_031.grd* až $U_338.grd$ z objektu *Gridder_od 250* (viz obr. 37).

Program Centra kompetence

Pro	operty M	Manager			×
	Auto U	pdate	Updat	te Now	?
G	eneral	Geometry	Searc	h	
	Gridde	er_uran (id:4	4)		
	Input			Data_3_2018.xlsm - Analyzy_Teleso	
	Input p	points		1895	
	Data d	ependent pa	aram	Recalculate	
	Action			Begin Gridding	
	Metho	bd			
	Metho	d		Inverse distance	\sim
	Anisot	ropy		General	\sim
	🗆 Elliş	pse		Axes for the general anisotropy ellipse.	
		First Axis		The first semi-axis of the anisotropy ellipse.	
		Х		-31.41530362	
		Y		38.89831228	
		Z		0	
	=	Second Axis		The second semi-axis of the anisotropy ellipse	
		Х		-41.63174924	
		Y		-33.62288311	
		Z		59.46679062	
	Ξ.	Third Axis		The third semi-axis of the anisotropy ellipse	
		Х		1.734868861	
		Y		1.401124852	
		Z		2.006758377	
	Power			2	
	Smoot	h		2	

Obr. 30: Zadané parametry elipsoidu anizotropie a parametrů IDW pro 3D gridování pro úrovně 220, 230 a 240 m n.m. (objekt Gridder_pod 250).

Pro	Property Manager ×							
Auto Update Upda			Update	Now ?				
General Geometry		Search						
	Geom	etry						
	🗆 X L	imits	(-	-656910, -656775)				
	Xn	nin	-	656910				
	Xn	nax	-1	656775				
	Y Limits			-1115710, -1115510)				
	Yn	nin	-	1115710				
	Yn	nax	-	1115510				
	🗆 Z L	imits	(2	215.5, 244.5)				
	Zn	nin	2	15.5				
	Zn	nax	2	44.5				
	🗆 Res	solution	(136 x 201 x 30)				
	Nx		1	36				
	Ny		2	01				
	Nz		3	0				
	🖃 Spa	acing	(1, 1, 1)				
	X s	pacing	1					
	Y s	pacing	1					
	Z s	pacing	1					

Obr. 31: Zadané parametry geometrie gridu pro 3D gridování pro úrovně 220, 230 a 240 m n.m. (objekt Gridder_pod 250).

_					_
Pro	perty I	Manager			×
	Auto Update Upda			ite Now	?
G	eneral	Geometry	Searc	ch	
	Searci	h			
	Search	1 type		General	\sim
	🗆 Sea	arch Ellipse		Axes for the search ellipse	
	-	First Axis		The first semi-axis of the search ellipse.	
		Х		-31.41530362	
		γ		38.89831228	
		Z		0	
	-	Second Axis		The second semi-axis of the search ellipse.	
		Х		-41.63174924	
		γ		-33.62288311	
		Z		59.46679062	
	-	Third Axis		The third semi-axis of the search ellipse.	
		Х		1.734868861	
		Υ		1.401124852	
		Z		2.006758377	
	Min se	arch count		1	÷
	Max se	earch count		100	+

Obr. 32: Zadané parametry výběru vzorků pro 3D gridování pro úrovně 220, 230 a 240 m n.m. (objekt Gridder_pod 250).

Pro	operty I	Manager				×			
	Auto U	pdate		Updat	e Now	?			
G	eneral	Geome	try	Searc	h				
	Gridder_od 250 (id:8)			1:8)					
	Input				Data_3_2018.xlsm - Analyzy_Teleso				
	Input	points			1895				
	Data d	epender	nt pa	ram	Recalculate				
	Action	1			Begin Gridding				
	Metho	bd							
	Method				Inverse distance	\sim			
	Anisotropy				General	\sim			
	🗆 Elli	pse			Axes for the general anisotropy ellipse.				
	-	First Axis	s		The first semi-axis of the anisotropy ellipse.				
		Х			-16.66628497				
		Y			47.14058703				
		Z			0				
	=	Second	Axis		The second semi-axis of the anisotropy ellipse				
		Х			-21.19971646				
		Y			-7.495033088				
		Z			76.77497314				
	Ξ	Third Ax	ds		The third semi-axis of the anisotropy ellipse				
	Х				2.714413224				
	Y				0.9596645089				
		Z			0.8432110531				
	Power				2				
	Smoot	th			2				

Obr. 33: Zadané parametry elipsoidu anizotropie a parametrů IDW pro 3D gridování pro úrovně od 250 m n.m. (objekt Gridder_od 250).

Pro	operty	Manager			×		
	Auto Update Upda			te Now	?		
G	eneral	Geometry	Searc	h			
	Geometry						
	ΞXL	.imits		(-656910, -656775)			
	Xr	nin		-656910			
	Xr	max		-656775			
	ΞYL	.imits		(-1115710, -1115510)			
	Y r	min		-1115710			
	Y r	max		-1115510			
	ΞZL	.imits		(215.5, 552.5)			
	Zr	min		215.5			
	Zr	max		552.5			
	🗆 Re	solution		(136 x 201 x 338)			
	Nx	:		136	•		
	Ny	r		201	-		
	Nz	:		338	+		
	🗆 Sp	acing		(1, 1, 1)			
	X s	pacing		1			
	Y s	pacing		1			
	Zs	pacing		1			

Obr. 34: Zadané parametry geometrie gridu pro 3D gridování pro úrovně od 250 m n.m. (objekt Gridder_od 250).

Pr	operty Manager			×			
☑	Auto Update	Updat	te Now	?			
6	ieneral Geometry	Search	h				
	Search						
	Search type		General	\sim			
	Search Ellipse		Axes for the search ellipse				
	🖃 First Axis		The first semi-axis of the search ellipse.				
	х		-16.66628497				
	Y		47.14058703				
	Z		0				
	Second Axis		The second semi-axis of the search ellipse.				
	х		-21.19971646				
	Y		-7.495033088				
	Z		76.77497314				
	Third Axis		The third semi-axis of the search ellipse.				
	х		2.714413224				
	Y		0.9596645089				
	Z		0.8432110531				
	Min search count		1	* *			
	Max search count		100	*			

Obr. 35: Zadané parametry výběru vzorků pro 3D gridování pro úrovně od 250 m n.m. (objekt Gridder_od 250).

C File Edit View Network Manager Viewer Window D T Data_3_2018.xlsm - A	Network Actions Tools Window Help	Image: Solution of the second sec
Property Manager		
General Labels Leger	nd	8
ScatterPlot_od 250_c	rid 2 (id:9)	
Input		
Density	100% (all points)	
	P 1	
Method	Fixed	
E Kendering	39.6.1	
Symbol	3D Cube	
Size	0.02	
Geometric quality	0.1785714528	
Snow lines		
Line width (points)		
Color method	By colormap	
Dendiv		U (ppm) -75500 -65000 -51000 -42500 -42500 -42500 -42500 -42500 -51000 -42500 -42500 -42500 -42500 -42500 -42500 -42500 -42500 -42500 -51000 -42500 -5100

Obr. 36: 3D grid obsahu uranu.

Select Slices ? ×	Select Slices ?
The selected file format does not support multiple-slice lattices. Specify the slices that you wish to save and a filename template. Each slice will be saved in a separate file named according to the template. The #'s will be replaced with the slice number.	The selected file format does not support multiple-slice lattices Specify the slices that you wish to save and a filename templat Each slice will be saved in a separate file named according to the template. The #'s will be replaced with the slice number.
Slices to Export Filename template: First: U_0##.grd Last: 30	Slices to Export First: 31 Last: 338 Filename template: U_###.grd
Skip: 0 🗘 OK Cancel	Skip: 0 🗘 OK Cancel

Obr. 37: Export souborů U_001.grd až U_030.grd z objektu Gridder_pod 250 (vlevo) a export souborů U_031.grd až U_338.grd z objektu Gridder_od 250 (vpravo).

2.2.7. Odhad zásob na základě 2D gridů technologických parametrů a jejich převedení do 3D gridu

2D gridy ve formátu *grd* (*Surfer*) jednotlivých horizontálních vrstev obsahu uranu (viz 2.2.6) jsou následně zpracovány programem *Uran_Teleso* (popis programu je v [3]), modul *Výpočet hodnot 3D gridů tělesa a odhad zásob*.

Po spuštění modulu Výpočet hodnot 3D gridů tělesa a odhad zásob se provádí:

 Omezení (vyblankování) původních gridů obsahu uranu exportovaných z Voxleru pro prostředí Surferu obvodovými polygony jednotlivých vrstev.

T A Č R

- Vytvoření textového souboru *Teleso_3D_grid_hodnoty.dat –* 3D gridu hodnot tělasa uranu (souřadnice X, Y, Z a obsah uranu v ppm), který po importu do *Voxleru* umožňuje 3D vizualizaci obsahu uranu tělesa (obr. 38). Ukázka části tohoto souboru je v tabulce 12. Po doplnění počátečních šesti řádků vznikne soubor *Teleso_3D_grid_hodnoty_GSLIB.dat* (tabulka 13), který lze importovat do prostředí *SGeMS –* objekt *Uran_3D_grid* (obr. 39).
- Kromě toho se vytváří výstupní sestava zásob (textový soubor *Zasoby.txt*). Obsah části tohoto souboru je v tabulce 14.

Činnost modulu je podrobně popsána v [3].

Obr. 38: Vizualizace hodnot obsahu uranu (ppm) v tělese v prostředí Voxler.

Tabulka 12: Část údajů souboru Teleso_3D_grid_hodnoty.dat.

-656785	-1115603	215.5	3013
-656786	-1115602	215.5	8000
-656785	-1115602	215.5	515
-656786	-1115599	215.5	480
-656787	-1115598	215.5	480
-656787	-1115597	215.5	954
-656788	-1115596	215.5	480
-656788	-1115595	215.5	930
-656789	-1115594	215.5	480
-656790	-1115592	215.5	1440
-656785	-1115603	216.5	2367
-656786	-1115602	216.5	516

Tabulka 13: Část údajů souboru Teleso_3D_grid_hodnoty_GSLIB.dat. Uran_3D_grid

4 X Y Z U -656785 -1115603 215.5 30 -656786 -1115602 215.5 80 -656785 -1115602 215.5 51 -656786 -1115599 215.5 48 -656787 -1115598 215.5 48 -656787 -1115597 215.5 95	13 00 5 00 04
-656788 -1115596 215.5 48	10
-656788 -1115595 215.5 93	30
-656789 -1115594 215.5 48	30
-656/90 -1115592 215.5 14	40
-656785 -1115603 216.5 23	
-050700 -1115002 210.5 51	.0
49 SGeMS beta Elle Objects Properties Regions Data Analysis View Scripts Help	- 0 X
Agenthm Description ■ Magnethm Description ■ United at the second set of elements in t	E. 6524654 9. 3574654 2. 3154654 2. 3154654 2. 3154654 3. 3554654 3. 3554654 3. 3554654 4. 6774664 9392 930
Load Save Clear All	

Obr. 39: Vizualizace hodnot obsahu uranu (ppm) v tělese v prostředí SGeMS.

asob.				
Pořadí vrstvy	Pocet bloků	Objem (m3)	Tonáž (kt)	Prum U (ppm)
001	10	10	0.026	
002	26	26	0.068	864
003	39	39	0.101	970
004	49	49	0.127	1016
005	57	57	0.148	1076
006	64	64	0.166	1158
007	64	64	0.166	1215
008	64	64	0.166	1227
009	54	54	0.14	1264
010	40	40	0.104	1292
011	123	123	0.32	1029
012	144	144	0.374	1095
326	2514	2514	6.536	212
327	2528	2528	6.573	211
	2500. Pořadí vrstvy 001 002 003 004 005 006 007 008 009 010 011 012 326 327	Isob. Pořadí vrstvy Pocet bloků 001 10 002 26 003 39 004 49 005 57 006 64 007 64 009 54 010 40 011 123 012 144 326 2514 327 2528	ISOD. Pořadí vrstvy Pocet bloků Objem (m3) 001 10 10 002 26 26 003 39 39 004 49 49 005 57 57 006 64 64 007 64 64 008 64 64 009 54 54 010 40 40 011 123 123 012 144 144 326 2514 2514 327 2528 2528	ASOD. Pořadí vrstvy Pocet bloků Objem (m3) Tonáž (kt) 001 10 10 0.026 002 26 26 0.068 003 39 39 0.101 004 49 49 0.127 005 57 57 0.148 006 64 64 0.166 007 64 64 0.166 009 54 54 0.14 010 40 40 0.104 011 123 123 0.32 012 144 144 0.374 326 2514 2514 6.536 327 2528 2528 6.573

Tabulka 14: Odhad zásob.

Centrum kompetence efektivní a ekologické těžby nerostných surovin		T A Č R	Prc	ogram Centra I	kompetence
542.5	328	2542	2542	6.609	210
543.5	329	2555	2555	6.643	209
544.5	330	2568	2568	6.677	209
545.5	331	2574	2574	6.692	213
546.5	332	2574	2574	6.692	212
547.5	333	2574	2574	6.692	211
548.5	334	2574	2574	6.692	209
549.5	335	2200	2200	5.72	221
550.5	336	891	891	2.317	131
551.5	337	151	151	0.393	53
552.5	338	11	11	0.029	32
	Celkem	296422	296422	770.697	2081

V prostředí *SGeMS* se pak zobrazí histogram četností a základní statistické charakteristiky obsahu uranu (ppm) vypočtených hodnot 3D gridu (bloků 1*1*1 m) tělesa (obr. 40).

Obr. 40: Histogram četností a základní statistické charakteristiky obsahu uranu (ppm) vypočtených hodnot 3D gridu (bloků 1*1*1 m) tělesa.

Při srovnání distribuce hodnot 3D gridu a distribuce hodnot vstupních dat (obr. 39 a obr. 26 vpravo) je zřejmé, že hodnoty 3D gridu obsahu uranu tělesa jsou v průměru 2.618 krát nadhodnoceny oproti vstupním hodnotám z důvodů popsaných v úvodu části 2.2.6. Toto lze částečně opravit:

- dotatečnou transformací hodnot 3D gridu podle distribuce vstupních dat (dále v textu varianta 1), nebo
- transformovat vstupní data do normovaného normálního rozdělení (dále NNR) a poté provést interpolaci popsanou v části 2.2.6 a zpětnou transformaci hodnot 3D gridu do původní distribuce vstupních dat (dále v textu varianta 2).

Varianta 1

Transformace hodnot 3D gridu (obr. 37 až 39) do původní distribuce (obr. 26 vpravo) se provede v prostředí *SGeMS* utilitou *Trans* (Remy et al., 2009). V objektu *Uran_3D_grid* pak kromě původních hodnot 3D gridu (objekt *U*) vznikne objekt *U_upr* se stejnou distribucí, jako mají vstupní data. Na obr. 41 je histogram četností takto vzniklého gridu, který je téměř totožný s histogramem vstupních hodnot (obr. 26 vpravo).

Obr. 41: Histogram četností a základní statistické charakteristiky obsahu uranu (ppm) upravených vypočtených hodnot 3D gridu (bloků 1*1*1 m) tělesa.

Na obr. 42 je vizualizace hodnot obsahu uranu (ppm) objektu U_upr v tělese v prostředí SGeMS.

Obr. 42: Vizualizace hodnot obsahu uranu (ppm) objektu U_upr v tělese v prostředí SGeMS.

Objekt *Uran_3D_grid* je dále vyexportován ve formátu *GSLIB* (soubor *Uran_3D_grid_upr.out*, viz tabulka 15) a po umazání vrchních sedmi řádků přejmenován na *Uran_3D_grid_upr.dat* – viz tabulka 16.

TA ČR

Tabulka 15: Část údajů souboru Uran_3D_grid_upr.out. Uran_3D_grid 5 Х Y 7 U U upr -656785 -1115603 215.5 3013 629.007263184 -656786 -1115602 215.5 8000 2253.27392578 -656785 -1115602 215.5 515 14.4618120193 -656786 -1115599 215.5 480 12.379357338 -656787 -1115598 215.5 480 12.379357338 -656787 -1115597 215.5 954 39.3747406006 -656788 -1115596 215.5 480 12.379357338 -656788 -1115595 215.5 930 33.7385292053 -656789 -1115594 215.5 480 12.379357338 -656790 -1115592 215.5 1440 131.83821106 Tabulka 16: Část údajů souboru Uran_3D_grid_upr.dat. -656785 -1115603 215.5 3013 629.007263184 -656786 -1115602 215.5 8000 2253.27392578 -656785 -1115602 215.5 515 14.4618120193 -656786 -1115599 215.5 480 12.379357338 -656787 -1115598 215.5 480 12.379357338 -656787 -1115597 215.5 954 39.3747406006 -656788 -1115596 215.5 480 12.379357338 -656788 -1115595 215.5 930 33.7385292053

-656789 -1115594 215.5 480 12.379357338 -656790 -1115592 215.5 1440 131.83821106

Soubor *Uran_3D_grid_upr.dat* je nainportován do prostředí *Voxler*, jednoduchou gridovací metodou (viz parametry gridování na obr. 43 až 45) je vytvořen 3D grid tělesa se stejnou geometrií (vizualizace je na obr. 46).

Pro	Property Manager ×							
	Auto U	pdate		Updat	te Now	?		
G	eneral	Geom	etry	Searc	;h			
	Gridde	er (id:8)						
	Input				Uran_3D_grid_upr.dat			
	Input points				296422			
	Data dependent param		ıram	Recalculate				
	Action			Begin Gridding				
-	Metho	bd						
	Metho	d			Inverse distance	\sim		
	Anisot	ropy			Isotropic	\sim		
	Power				2			
	Smooth			2				

Obr. 43: Základní parametry tvorby 3D gridu tělasa – upravené hodnoty.

Property Manager		×
🗹 Auto Update	Update Now	?
General Geometry	Search	
🗆 Geometry		
X Limits	(-656910, -656775)	
X min	-656910	
X max	-656775	
Y Limits	(-1115710, -1115510)	
Y min	-1115710	
Y max	-1115510	
Z Limits	(215.5, 552.5)	
Z min	215.5	
Z max	552.5	
Resolution	(136 x 201 x 338)	
Nx	136	÷
Ny	201	÷
Nz	338	÷
Spacing	(1, 1, 1)	
X spacing	1	
Y spacing	1	
Z spacing	1	

Obr. 44: Zadané parametry geometrie gridu pro 3D gridování upravených hodnot.

Proj	Property Manager						
⊿,	Auto Uj	pdate		Update	Now		?
Ge	neral	Geom	etry	Search			
Ξ :	Search	1					
1	Search	type		5	imple		\sim
	Radius			(.5		
	Min co	unt		1			*
	Max co	unt		1			•

Obr. 45: Zadané parametry výběru vzorků pro 3D gridování upravených hodnot.

Voxler - [3D_Grid_upr.voxb*]		D X
C Ella Edit View National Adiana Taola Window Mala		
A Die Fon Tuss Brunne Bronne Ioon Weison Dab		
reswork manager + X	30 [°] eud "htteste, ×	
Viewer Window OD		
To Date 1 2019 dame - Analyse Talana OT-OT Scattering and other		
BoundingBoxOD		
V Oran_30_grid_upr.dat		
D ScatterPlot_Uran_3D_grid_upr OD		
-O Maxes 200		
BoundingBox 200		
Property Manager X		
Auto Update Update Now ?		
General Labels Legend		
C. H. B. CAN		
Codder		
input onoter		
Densty 100% (all points)		
Classification		
Method Fixed		
E Rendering		
Symbol 3D Cube	U(ppm) (A)	
Size 0.01		
Geometric quality 0.1785714328	78500	
Show lines		
Line width (points) 1		
Color method By colormap		
Colormap Rainbow	- 51000	
Dealth		
The number of points to plot	34000	
The number of points to poet.	25500	
		L-

Obr. 46: Vizualizace 3D gridu upravených hodnot v prostředí Voxler.

T A Č R

Dále se provede export 2D gridů z objektů *Gridder* (příkaz *Save Data*) ve formátu *grd* (*Surfer*) jednotlivých horizontálních vrstev obsahu uranu (s názvem *U_XXX.grd*, kde XXX je pořadí vrstvy) do adresáře určeném v inicializačním souboru *Uran_Teleso_init.dat* (*D:\CK\Programy\Brzkov\Gridy_upr*) pro další zpracování programem *Uran_Teleso* ([3]). V tomto adresáři pak budou uloženy soubory všech 338 vrstev *U_001.grd* až *U_338.grd* z objektu *Gridder* (viz obr. 47).

Select Slices	? ×						
The selected file format does not support multiple-slice lattices. Specify the slices that you wish to save and a filename template. Each slice will be saved in a separate file named according to the template. The #'s will be replaced with the slice number.							
Slices to Export	Filename template:						
First: 1	U_###.grd						
Last: 338 单							

Obr. 47: Export souborů U 001.grd až U 338.grd z objektu Gridder.

Takto vyexportované 2D gridy ve formátu *grd* (*Surfer*) jednotlivých horizontálních vrstev obsahu uranu (viz 2.2.6) jsou následně zpracovány programem *Uran_Teleso* (popis programu je v [3]), modul *Výpočet hodnot 3D gridů tělesa a odhad zásob*. Podobně jako bylo popsáno na začátku části 2.2.7, je vytvořen textový soubor *Teleso_3D_grid_hodnoty.dat* – 3D grid upravených hodnot tělasa uranu (souřadnice X, Y, Z a obsah uranu v ppm) a také se vytváří výstupní sestava zásob (textový soubor *Zasoby.txt*). Obsah části tohoto souboru je v tabulce 17.

Činnost modulu je podrobně popsána v [3].

Tabulka 17: Odhad zásob – varianta 1.									
Vrstva m n.m.	Pořadí vrstvy	Pocet bloků	Objem (m3)	Tonáž (kt)	Prum U (ppm)				
215.5	001	10	10	0.026					
216.5	002	26	26	0.068	48				
217.5	003	39	39	0.101	43				
218.5	004	49	49	0.127	45				
219.5	005	57	57	0.148	56				
220.5	006	64	64	0.166	69				
221.5	007	64	64	0.166	79				
222.5	008	64	64	0.166	83				
223.5	009	54	54	0.14	94				
224.5	010	40	40	0.104	103				
225.5	011	123	123	0.32	49				
226.5	012	144	144	0.374	59				
	222	05.00	05.00	C (777	-				
544.5	330	2568	2568	6.677	7				
545.5	331	2574	2574	6.692	8				
546.5	332	2574	2574	6.692	8				
547.5	333	2574	2574	6.692	7				
548.5	334	2574	2574	6.692	7				
549.5	335	2200	2200	5.72	8				
550.5	336	891	891	2.317	5				
551.5	337	151	151	0.393	3				
552.5	338	11	11	0.029	3				
	Celkem	296422	296422	770.697	801				

Varianta 2

Druhou možností jak zajistit, aby distribuce vstupních dat a výsledného 3D gridu byly velmi podobné, je transformovat vstupní data do normovaného normálního rozdělení (dále NNR), poté provést interpolaci

popsanou v části 2.2.6 s takto transformovanými vstupními daty a vzniklý 3D grid následně zpětně transformovat do původní distribuce vstupních dat.

Transformace vstupních hodnot obsahu uranu tělesa (obr. 26 vpravo) do NNR se provede v prostředí *SGeMS* utilitou *Trans* (Remy et al., 2009), viz obr. 48. V objektu *Teleso_Uran* pak kromě původních vstupních hodnot (objekt *U*) vznikne objekt *U_NNR*. Na obr. 49 je histogram četností vstupních dat transformovaných do NNR.

Obr. 48: Transformace vstupních hodnot obsahu uranu (ppm) tělesa do NNR (objekt U NNR) v prostředí SGeMS.

Obr. 49: Histogram četností a základní statistické charakteristiky vstupních dat tělesa transformovaných do NNR.

Objekt *Teleso_Uran* je dále vyexportován ve formátu *GSLIB* (soubor *Teleso_Uran_NNR.out*, viz tabulka 18) a po umazání vrchních devíti řádků přejmenován na *Teleso_Uran_NNR.dat* – viz tabulka 19.

TA ČR

Tabulka 18: Část údajů souboru Teleso_Uran_NNR.out.

```
Teleso_Uran
    Х
    Y
    7.
   Hloubka
    U
   U NNR
    7
    -656797.625 -1115652.5 261 0.050000007451 8000 2.12298297882 261
    -656797.5 -1115652.5 261 0.15000000596 8000 2.12298297882 261
    -656797.4375 -1115652.5 261 0.25 230 0.592079341412 261
    -656797.3125 -1115652.5 261 0.34999999404 230 0.596812009811 261
    -656797.25 -1115652.375 261 0.449999988079 800 1.04415535927 261
    -656797.125 -1115652.375 261 0.550000011921 800 1.04187774658 261
    -656800.75 -1115644.125 261 10.0500001907 480 0.868681967258 261
Tabulka 19: Část údajů souboru Teleso_Uran_NNR.dat.
```

-656797.625 -1115652.5 261 0.050000007451 8000 2.12298297882 261 -656797.5 -1115652.5 261 0.1500000596 8000 2.12298297882 261 -656797.4375 -1115652.5 261 0.25 230 0.592079341412 261 -656797.3125 -1115652.5 261 0.34999999404 230 0.596812009811 261 -656797.25 -1115652.375 261 0.449999988079 800 1.04415535927 261 -656797.125 -1115652.375 261 0.550000011921 800 1.04187774658 261 -656800.75 -1115644.125 261 10.0500001907 480 0.868681967258 261

Soubor *Teleso_Uran_NNR.dat* je nainportován do prostředí *Voxler* a stejně jako v části 2.2.6 je provedeno 3D gridování (soubor *3D_Grid_NNR.voxb*, obr. 50) tělesa rozděleného na dva hlavní směry (stejně jako v části 2.2.6 ve výškových úrovních od 220, 230 a 240 m.n.m. a ve výškových úrovních od 250 m n.m. až po povrch - nastavení parametrů gridování je také stejné – viz obr. 30 až 35).

Na obr. 50 je zobrazen výsledný 3D grid distribuce uranu v NNR.

Obr. 50: 3D grid obsahu uranu v NNR.

Dále se provede export 2D gridů z objektů *Gridder* (příkaz *Save Data*) ve formátu *grd* (*Surfer*) jednotlivých horizontálních vrstev obsahu uranu (s názvem *U_XXX.grd*, kde XXX je pořadí vrstvy) do

adresáře určeném v inicializačním souboru *Uran_Teleso_init.dat* (*D:\CK\Programy\Brzkov\Gridy_NNR*) pro další zpracování programem *Uran_Teleso* ([3]). V tomto adresáři pak budou uloženy soubory všech 338 vrstev *U_NNR_001.grd* až *U_NNR_030.grd* z objektu *Gridder_pod 250 NNR a U_NNR_031.grd* až *U_NNR_338.grd* z objektu *Gridder_od 250 NNR* (viz obr. 51).

Select Slices ?	×	Select Slices	? ×
The selected file format does not support multiple-slice lattice Specify the slices that you wish to save and a filename temp Each slice will be saved in a separate file named according to template. The #'s will be replaced with the slice number.	es. late. • the	The selected file forma Specify the slices that Each slice will be saved template. The #'s will	It does not support multiple-slice lattices. you wish to save and a filename template. I in a separate file named according to the be replaced with the slice number.
Slices to Export Filename template:		Slices to Export	Filename template:
First: U_NNR_0##.grd		First: 31 ≑	U_NNR_###.grd
Last: 30 🖨		Last: 338 ≑	
Skip: 0 🔶 OK Cance	el	Skip: 0	OK Cancel

Obr. 51: Export souborů U_NNR_001.grd až U_NNR_030.grd z objektu Gridder_pod 250 NNR (vlevo) a export souborů U_NNR_031.grd až U_NNR_338.grd z objektu Gridder_od 250 NNR (vpravo).

Takto vyexportované 2D gridy ve formátu grd (Surfer) jednotlivých horizontálních vrstev obsahu uranu v NNR jsou následně zpracovány programem Uran_Teleso, modul Výpočet hodnot 3D gridu tělesa v NNR (obr. 52). Tento modul (popis modulu je v [3]) vytváří textový soubor Teleso_3D_grid_NNR_hodnoty.dat – 3D grid hodnot tělasa uranu v NNR (souřadnice X, Y, Z a obsah uranu v NNR). Ukázka tohoto souboru je v tabulce 20. Soubor Teleso_3D_grid_NNR_hodnoty.dat byl upraven do formátu GSLIB (soubor Teleso_3D_grid_NNR_hodnoty_GSLIB.dat, ukázka viz tabulka 21) a importován do SGeMS jako point set (objekt Uran_Teleso_3D_grid_NNR) pro zpětnou transformaci utilitou Trans (Remy et al., 2009) do původní distribuce vstupních dat (obr. 53).

💢 Výpočet podle zadaných	vstupních parametrů	_		×
–Vyberte inicializační vstupní sou	bor Uran_Viz_init*.dat):			
d: [DATADRIVE1]	✓ Uran_Teleso_ir	nit.dat		
🔄 D:\				
CK				
Brzkov				
Gridy_NNR				
Vyhraný inicializační souho	r.			
D:\CK\Programy\Brzkov\G	 ridy_NNR\Uran_Teleso_init.dal	t		
Vstupní parametry				
Topologie tělesa uranu bude vy	tvořena od 215.5 po 554.5 m n.m. s k	rokem 1 m		
Zmin (m n m): 2155	Zmax (m n.m.): 552 5			
Vertikální řezy - parametry vizu	alizace		10	
Spodni X2 (JTSK): 1115/0	U Vzdalenost mezi rezy X∠ (m): 1	U Pocet		
Levý YZ (JTSK): 65690	U Vzdálenost mezi řezy YZ (m): 1	U Počet	13	
Vykreslovat vrty do vzdalenos	ti od rezu (m): j 🔉			
			Vstu	р <u>О</u> К
Výpočet <u>t</u> opologie 3D gridu	Výpočet hodnot 3D gridu tělesa,	Výp	očet hodn	ot 3D
tělesa	odhad zásob	grid	lu tělesa v	NNR
Vykreslení <u>h</u> orizontálních řezů	Vykreslení zadaných vertikálních ře	zů	Cancel	
zadanych vrstev	×∠ a ĭ ∠			
Zpracovávaná vrstva: 420.5 m r	n.m., pořadí vrstvy: 206			

Obr. 52: *Program Uran_Teleso, modul Výpočet hodnot 3D gridu tělesa v NNR.*

T A Č R

Tabulka 20: Část údajů souboru Teleso_3D_grid_NNR_hodnoty.dat.

-656785 -1115603 215.5 1.25399244247243 -656786 -1115602 215.5 1.61311743343845 -656785 -1115602 215.5 0.894563865590557 -656786 -1115599 215.5 0.869646627469177 -656787 -1115598 215.5 0.869646565628112 -656787 -1115597 215.5 1.03847284002651 -656788 -1115596 215.5 0.869646890972225 -656788 -1115595 215.5 1.0443364246944 -656789 -1115594 215.5 0.983253267924528 -656790 -1115592 215.5 1.21140980721

Tabulka 21: Část údajů souboru Teleso_3D_grid_NNR_hodnoty_GSLIB.dat.

Uran Tel	leso 3D gi	rid NNH	- ٦
4		_	
Х			
Y			
Z			
U NNR			
-656785	-1115603	215.5	1.25399244247243
-656786	-1115602	215.5	1.61311743343845
-656785	-1115602	215.5	0.894563865590557
-656786	-1115599	215.5	0.869646627469177
-656787	-1115598	215.5	0.869646565628112
-656787	-1115597	215.5	1.03847284002651
-656788	-1115596	215.5	0.869646890972225
-656788	-1115595	215.5	1.0443364246944
-656789	-1115594	215.5	0.983253267924528
-656790	-1115592	215.5	1.21140980721

Obr. 53: Zpětná transformace 3D gridu hodnot tělesa v NNR do původní distribuce vstupních hodnot obsahu uranu (ppm) (objekt U_NNR_zpet) v prostředí SGeMS.

V objektu *Uran_Teleso_3D_grid_NNR* pak kromě hodnot 3D gridu v NNR (objekt *U_NNR*) vznikne objekt *U_NNR_zpet* se stejnou distribucí, jako mají vstupní data. Na obr. 54 je histogram četností takto vzniklého gridu, který je téměř totožný s histogramem vstupních hodnot (obr. 26 vpravo).

Obr. 54: Histogram četností a základní statistické charakteristiky obsahu uranu (ppm) vypočtených hodnot 3D gridu (bloků 1*1*1 m) tělesa po zpětné transformaci z NNR.

Další postup je obdobný jako ve variantě 1. Objekt *Uran_Teleso_3D_grid_NNR* je dále vyexportován ve formátu *GSLIB* (soubor *Uran_Teleso_3D_NNR_zpet.out*, viz tabulka 22) a po umazání vrchních sedmi řádků přejmenován na *Uran_Teleso_3D_NNR_zpet.dat* – viz tabulka 23.

Tabulka 22: Část údajů souboru Uran_Teleso_3D_NNR_zpet.out.

```
Uran_Teleso_3D_grid_NNR
   5
   Х
   Υ
   Ζ
   U NNR
   U NNR zpet
   -656785 -1115603 215.5 1.25399243832 587.921325684
   -656786 -1115602 215.5 1.61311745644 3133.25415039
   -656785 -1115602 215.5 0.894563853741 131.71534729
   -656786 -1115599 215.5 0.869646608829 128.753067017
   -656787 -1115598 215.5 0.869646549225 128.735488892
   -656787 -1115597 215.5 1.03847289085 161.20791626
   -656788 -1115596 215.5 0.869646906853 128.876205444
   -656788 -1115595 215.5 1.04433643818 168.461608887
   -656789 -1115594 215.5 0.983253240585 140.322418213
   -656790 -1115592 215.5 1.21140980721 458.565795898
Tabulka 23: Část údajů souboru Uran_Teleso_3D_NNR_zpet.dat.
   -656785 -1115603 215.5 1.25399243832 587.921325684
   -656786 -1115602 215.5 1.61311745644 3133.25415039
   -656785 -1115602 215.5 0.894563853741 131.71534729
   -656786 -1115599 215.5 0.869646608829 128.753067017
   -656787 -1115598 215.5 0.869646549225 128.735488892
   -656787 -1115597 215.5 1.03847289085 161.20791626
   -656788 -1115596 215.5 0.869646906853 128.876205444
   -656788 -1115595 215.5 1.04433643818 168.461608887
   -656789 -1115594 215.5 0.983253240585 140.322418213
   -656790 -1115592 215.5 1.21140980721 458.565795898
```

Soubor *Uran_Teleso_3D_NNR_zpet.dat* je nainportován do prostředí *Voxler*, jednoduchou gridovací metodou (viz parametry gridování na obr. 55 až 57) je vytvořen 3D grid tělesa se stejnou geometrií (vizualizace je na obr. 58).

_				
Pro	operty I	Manager		×
	Auto U	lpdate	Updat	e Now ?
G	eneral	Geometry	Searc	h
	Gridde	er (id:18)		
	Input			Uran_Teleso_3D_NNR_zpet.dat
	Input p	points		296398
	Data d	ependent pa	aram	Recalculate
	Action	n		Begin Gridding
-	Metho	bd		
	Metho	d		Inverse distance 🗸
	Anisotropy			lsotropic 🗸
	Power			2
	Smoot	th		2

Obr. 55: Základní parametry tvorby 3D gridu tělasa – hodnoty transformované z NNR.

Pro	pert	y Manager			×
2	Auto	Update	Update	Now	?
Ge	enera	al Geometry	Search		
	Geo	metry			
	ΞX	(Limits	(-	-656910, -656775)	
	Х	(min	-(656910	
	Х	(max	-	656775	
	ΞY	(Limits	(-	-1115710, -1115510)	
	γ	(min	-	1115710	
	γ	(max	-	1115510	
	ΞZ	Limits	(2	215.5, 552.5)	
	Z	Z min	2	15.5	
	Z	Z max	5	52.5	
		Resolution	(136 x 201 x 338)	
	N	٧x	1	36	-
	N	Ny	2	01	+
	N	Nz	3	38	-
	🗆 S	pacing	(1, 1, 1)	
	Х	(spacing	1		
	γ	/ spacing	1		
	Z	Z spacing	1		

Obr. 56: Zadané parametry geometrie gridu pro 3D gridování – hodnoty transformované z NNR.

Property	Manager			×
🗹 Auto	Update	Update	Now	?
General	Geometry	Search		
😑 Searc	:h			
Searc	h type	Si	mple	\sim
Radiu	IS	0.	5	
Min o	ount	1		÷
Max o	ount	1		* *

Obr. 57: Zadané parametry výběru vzorků pro 3D gridování – hodnoty transformované z NNR.

Obr. 58: Vizualizace 3D gridu hodnot transformovaných z NNR v prostředí Voxler.

Dále se provede export 2D gridů z objektů *Gridder* (příkaz *Save Data*) ve formátu *grd* (*Surfer*) jednotlivých horizontálních vrstev obsahu uranu (s názvem *U_XXX.grd*, kde XXX je pořadí vrstvy) do adresáře určeném v inicializačním souboru *Uran_Teleso_init.dat* (*D:\CK\Programy\Brzkov\Gridy_NNR*) pro další zpracování programem *Uran_Teleso* ([3]). V tomto adresáři pak budou uloženy soubory všech 338 vrstev *U_001.grd* až *U_338.grd* z objektu *Gridder* (viz obr. 47).

Takto vyexportované 2D gridy ve formátu *grd* (*Surfer*) jednotlivých horizontálních vrstev obsahu uranu (viz 2.2.6) jsou následně zpracovány programem *Uran_Teleso* (popis programu je v [3]), modul *Výpočet hodnot 3D gridů tělesa a odhad zásob*. Podobně jako to bylo popsáno u varianty 1, je vytvořen textový soubor *Teleso_3D_grid_hodnoty.dat* – 3D grid hodnot tělasa uranu (souřadnice X, Y, Z a obsah uranu v ppm) a také se vytváří výstupní sestava zásob (textový soubor *Zasoby.txt*). Obsah části tohoto souboru je v tabulce 24.

Činnost modulu Výpočet hodnot 3D gridů tělesa a odhad zásob je podrobně popsána v [3].

Tabulka 24: Odh	nad zásob – varian	ata 2.			
Vrstva m n.m.	Pořadí vrstvy	Pocet bloků	Objem (m3)	Tonáž (kt)	Prum U (ppm)
215.5	001	10	10	0.026	517
216.5	002	26	26	0.068	180
217.5	003	39	39	0.101	211
218.5	004	49	49	0.127	224
219.5	005	57	57	0.148	243
220.5	006	64	64	0.166	271
221.5	007	64	64	0.166	285
222.5	008	64	64	0.166	292
223.5	009	54	54	0.14	324
224.5	010	40	40	0.104	346
225.5	011	123	123	0.32	229
226.5	012	144	144	0.374	248
540.5	326	2514	2514	6.536	14
541.5	327	2528	2528	6.573	14
542.5	328	2543	2543	6.612	14
543.5	329	2555	2555	6.643	14
544.5	330	2568	2568	6.677	14
545.5	331	2574	2574	6.692	14

×	Centrum kompetence efektivni a ekologické nerostných surovin	ż těžby	т Č	A R	Program Centra kompetence		
	546.5	332	2574	2574	6.692	14	
	547.5	333	2574	2574	6.692	14	
	548.5	334	2574	2574	6.692	15	
	549.5	335	2200	2200	5.72	14	
	550.5	336	891	891	2.317	5	
	551.5	337	151	151	0.393	4	
	552.5	338	11	11	0.029	3	
		Celkem	296398	296398	770.635	780	

2.2.8. Vizualizace horizontálních řezů ve 2D v prostředí Surfer (program Uran_Teleso)

Jak bylo uvedeno v části 2.2.4, 4. modul programu *Uran_Teleso* realizuje vizualizaci horizontálních řezů ve 2D v prostředí *Surfer*. Před jeho spuštěním je možné zadat v rámu *"Horizontální řezy - parametry vizualizace"* (obr. 21) hodnoty Zmin (m n.m.) a Zmax (m n.m.) vrstev, které se mají zpracovat a poté tyto hodnoty potvrdit stlačením tlačítka *"Vstup <u>OK</u>"*.

<u>Upozornění</u>: Po případné aktualizaci vstupních dat se musí provést nejprve zpracování popsané v části 2.2.6 a 2.2.7.

Po spuštění 4. modulu tlačítkem "Vykreslení <u>h</u>orizontálních řezů zadaných vrstev" (viz obr. 24) se provádí postupná tvorba a zobrazení *srf* souborů horizontálních řezů ve 2D v prostředí *Surfer* (postupně generuje soubory XXX_ZZZm_2D.srf pro jednotlivé vrstvy XXX s nadmořskou výškou ZZZ) pro jednotlivé vrstvy zadané v rámu "Horizontální řezy - parametry vizualizace" v měřítku zadaném v inicializačním souboru.

Činnost modulu 4 programu Uran_Teleso je podrobně popsána v [3].

Na obr. 59 je vizualizace jednoho z 338 takto vygenerovaných horizontálních řezů varianty 1 (při zadání dle obr. 24) v prostředí *Surferu*. Na obr. 60 je vizualizace odpovídajícího horizontálního řezu varianty 2 pro stejnou vrstvu. Zapínáním, případně vypínáním objektů v levém okně lze zobrazit:

- Hodnoty údajů o jednotlivých blocích zásob (*Cislo_bloku U*) v řezu zobrazených z textových souborů *Grid_XXX.dat* (*XXX* je pořadí vrstvy) viz [3] (objekt *Bloky*).
- Hodnoty vstupních dat (*ID U*) z listu *Analyzy_Teleso* souboru vstupních dat *Data_3_2018.xlsm* (viz 2.2.1), které jsou v horizontální vzdálenosti ± 0.5 m od řezu (objekt *Analýzy*).
- Obsahy uranu bloků řezu (objekt *U*).
- Color Scale obsahu uranu bloků řezu (objekt *Color Scale U*).
- Obvod tělesa uranu v řezu (objekt Obvod území).
- Jednotlivé osy souřadného systému (Objekty Right Axis, Left Axis, Top Axis, Bottom Axis).

Po případné změně měřítka objektu *Map*, nebo po dalších formálních doplněních, lze takový řez přímo tisknout na vhodné výstupní zařízení.

Obr. 59: Vizualizace horizontálního řezu 402.5 m.n.m. (soubor 188_402.5m_2D.srf), varianta 1 v prostředí Surferu.

Surfer - [188_402.5m_2D.srf*]								
File Edit View Draw Arrange Grid Map G	eo <u>p</u> roce	ssing <u>T</u> ools <u>W</u> indow	<u>H</u> elp					
i 🔁 📩 🖆 🗮 🖨 🗿 🗣 i 🗙 🕩 🛍 i 🦘 🎓 i 👰	÷ : 6	ب 🗨 🔍 🔍 💭 🔍	🍟 🖉 🤉 🐺 📮	IA ⊘ <u>∽</u> +		_	_	
X: 0 🗘 Y: 0 🗘 W: 0	÷	н: 0 🗘 🔒	🔍 🖪 🖉	🔛 🔝 🔛	도 🚸 📣 🔚 🔚	🖼 🚽 👗 🛆 🚿 🐁	🖻 🖬 🍭 🗶 🗶 🖕	;
Object Manager 🔷 🕈 🗙	•	184_398.5m_2D.srf 18	85_399.5m_2D.srf	186_400.5m_2D.srt	f 187_401.5m_2D.srf	188_402.5m_2D.srf* >	189_403.5m_2D.srf	190_404.5m_20
✓ Color Scale U ✓ Map ✓ Map ✓ Ø Bloky ✓ Ø Analýzy ✓ U Ø ✓ ¶ Obvod území				ئىيلىنىلىتىلىنىلىتىل Horizont	ální řez 402	.5 m.n.m.		4119444794444
Image: Wight Avis Image: Wight Avis		1115520 1115540						llaam
		1115560 -			1			50000 - 45000
		1115580						- 40000 - 35000
Property Manager - Nothing Selected		1115620 -						- 25000 - 20000
		1115640						- 15000 - 10000 - 5000
		1115660 -						0
	8 1997 -	1115680 -						
		1118700 -	656900	556880 6568	60 656840	656820 656800	656780	
Zoom to the extents of a dragged restangles are exits	1 <u>*3</u> <							

Obr. 60: Vizualizace horizontálního řezu 402.5 m.n.m. (soubor 188_402.5m_2D.srf), varianta 2 v prostředí Surferu.

2.2.9. Vizualizace sítě vertikálních řezů ve 2D v prostředí Surfer (program Uran_Teleso)

Jak bylo uvedeno v části 2.2.4, 5. modul programu *Uran_Teleso* realizuje vizualizaci sítě vertikálních řezů ve 2D v prostředí *Surfer*. Před jeho spuštěním je možné zadat v rámu "*Vertikální řezy - parametry vizualizace*" (obr. 21, 24) hodnoty geometrie sítě vertikálních řezů, které se mají zpracovat a poté tyto hodnoty potvrdit stlačením tlačítka "*Vstup OK*".

<u>Upozornění</u>: Po případné aktualizaci vstupních dat se musí provést nejprve zpracování popsané v části 2.2.6 a 2.2.7.

Po spuštění 5. modulu tlačítkem "*Vykreslení zadaných vertikálních řezů XZ a YZ*" (viz obr. 24) se v první fázi vytvoří data a gridy sledovaných technologických parametrů v zadaných vertikálních řezech a ve druhé fázi se tato data a gridy vykreslí v prostředí *Surfer* (podrobněji v [3]).

Ve druhé fázi se provádí postupná tvorba a zobrazení *srf* souborů vertikálních řezů ve 2D v prostředí *Surfer* (nejprve se postupně generují soubory *VertXZ_YYY_2D.srf* - *YYY* je souřadnice *Y* řezu v kartézské

souřadné soustavě a následně se postupně generují soubory *VertYZ_XXX_2D.srf* - *XXX* je souřadnice *X* řezu v kartézské souřadné soustavě) podle zadání v rámu *"Horizontální řezy - parametry vizualizace"* (obr. 24) v měřítku zadaném v inicializačním souboru.

Činnost modulu 5 programu Uran_Teleso je podrobně popsána v [3].

Na obr. 61 je vizualizace jednoho z 18 takto vygenerovaných vertikálních řezů XZ varianty 1 (při zadání dle obr. 24) v prostředí *Surferu*. Na obr. 62 je vizualizace odpovídajícího vertikálního řezu XZ varianty 2. Na obr. 63 je vizualizace jednoho z 13 takto vygenerovaných vertikálních řezů YZ varianty 1 (při zadání dle obr. 24) v prostředí *Surferu*. Na obr. 64 je vizualizace odpovídajícího vertikálního řezu XZ varianty 2. Zapínáním, případně vypínáním objektů v levém okně lze zobrazit:

- Hodnoty údajů o jednotlivých blocích zásob (*Cislo_bloku U*) v řezu zobrazených z textových souborů *VertXZ_XXX.dat* nebo *VertYZ_XXX.dat* (*XXX* je souřadnice řezu) viz [3] (objekt *Bloky*).
- Hodnoty vstupních dat (*ID_vzdal U*) z listu *Analyzy_Teleso* souboru vstupních dat *Data_3_2018.xlsm* (viz 2.2.1), které jsou do zadané vzdálenosti od řezu (objekt *Analýzy*). Vzdálenost *vzdal* od řezu analýz vybraných do řezu (u XZ je kladná pro vrty nad řezem a záporná pro vrty pod řezem, u YZ je kladná pro vrty vpravo od řezu a záporná pro vrty vlevo od řezu).
- Obsahy uranu bloků řezu (objekt *U*).
- Color Scale obsahu uranu bloků řezu (objekt *Color Scale U*).
- Zobrazení povrchu v řezu (objekt Povrch).
- Jednotlivé osy souřadného systému (Objekty Right Axis, Left Axis, Top Axis, Bottom Axis).

Po nastavení měřítka objektu *Map*, případně po dalších formálních doplněních, lze takový řez přímo tisknout na vhodné výstupní zařízení.

TA ČR

Obr. 61: Vizualizace vertikálního řezu XZ 1115600 (JTSK) (soubor VertXZ_1115600_2D.srf), varianta 1 v prostředí Surferu.

Obr. 62: *Vizualizace vertikálního řezu XZ 1115600 (JTSK) (soubor VertXZ_1115600_2D.srf), varianta 2 v prostředí Surferu.*

Obr. 63: Vizualizace vertikálního řezu YZ 656810 (JTSK) (soubor VertYZ_656810_2D.srf), varianta 1 v prostředí Surferu.

Obr. 64: Vizualizace vertikálního řezu YZ 656810 (JTSK) (soubor VertYZ_656810_2D.srf), varianta 2 v prostředí Surferu.

2.2.10. Vizualizace technologických parametrů ve 3D v prostředí Voxler

Jak bylo uvedeno v části 2.2.7, byl pro obě varianty modelu v prostředí *Voxler* objektem *Gridder* vytvořen 3D grid obsahu uranu ve středech bloků 1*1*1 m, který lze vizualizovat přímo s pomocí modulu *ScatterPlot* (pro variantu 1 obr. 46 a pro variantu 2 obr. 58). Pro zobrazení tělasa uranu lze využít i další moduly *Voxleru*.

Následují ukázky některých z mnoha dalších možných způsobů 3D vizualizace technologických parametrů tělesa uranu. Na obr. 65 je vizualizace obsahu uranu, varianta 1, pomocí modulu *VolRender*, totéž pro variantu 2 je na obr. 66. Na obr. 67 je vizualizace řezu tělesa uranu, varianta 1, pomocí modulu *OrthoImage*, totéž pro variantu 2 je na obr. 68. Na obr. 69 je vizualizace obálky tělesa s obsahem uranu nad 1000 ppm, varianta 1, pomocí modulu *Isosurface*, totéž pro variantu 2 je na obr. 70.

Obr. 65: Vizualizace obsahu uranu (VolRender), varianta 1.

Obr. 66: Vizualizace obsahu uranu (VolRender), varianta 2.

Obr. 67: Vizualizace řezu tělesa - obsahu uranu (OrthoImage), varianta 1.

Obr. 68: Vizualizace řezu tělesa - obsahu uranu (OrthoImage), varianta 2.

Obr. 69: *Vizualizace obálky tělesa s obsahem uranu nad 5000 ppm (Isosurface), varianta 1.*

Obr. 70: Vizualizace obálky tělesa s obsahem uranu nad 5000 ppm (Isosurface), varianta 2.

TA ČR

2.3. Závěr

Předkládaná metodika modelování ložiska uranu Brzkov je unikátní v tom, že specifikuje jednotlivé kroky metodického postupu od pořízení potřebných vstupních údajů z archivní dokumentace, přes vytvoření strukturního modelu, uplatnění moderních algoritmů tvorby variantních 3D technologických modelů ložiska, až po odhady zásob a vizualizaci modelů. Pomocí speciálně vytvořeného programového vybavení je zajištěna kontrola vstupních dat, kompatibilita použitých programů (*MS Excel, Surfer, Voxler, SGeMS*) a je také realizováno automatické generování výstupů – různých typů vizualizace ložiska ve 2D a ve 3D.

Tato metodika spolu s nově vyvinutým programovým vybavením umožňuje vytvářet variantní modely ložiska tohoto a obdobných typů, umožňuje také rychlé aktualizace těchto modelů při doplnění nebo změně vstupních dat (případně i parametrů modelování - například použití více variant parametrů interpolace).

Omezujícím faktorem v procesu modelování distribuce technologických parametrů je malá hustota a nerovnoměrnost průzkumných děl, kdy většina analýz pochází pouze ze tří hloubkových úrovní. Proto logicky věrohodnost výsledků modelování klesá se zvyšující se vzdáleností od prostorového umístění analýz.

Jak již bylo konstatováno v části 2.2.6, pro spolehlivý odhad hodnot 3D gridu geologického tělesa by mělo být těleso <u>pravidelně a přitom hustě ovzorkováno</u>, což u libovolného tělasa uranu strukturního modelu (viz 2.2.3) zjevně není splněno (viz obr. 18 pro vybrané těleso). V některých částech vybraného tělesa uranu vstupní data vůbec nejsou (například v horizontálních úrovních od 280 do 390 m n.m. nebo v horizontálních úrovních od 480 do 540 m n.m. – viz obr. 28), zde je věrohodnost vypočtené prostorové distribuce obsahu uranu velmi nízká. Pro zvýšení věrohodnosti modelu tělesa uranu je nezbytné doplnit další vstupní údaje.

3. Srovnání "novosti postupů"

Nová metodika tvorby a vizualizace 3D modelu ložisek geneticky obdobných s vzorovým modelovým ložiskem uranu Brzkov přináší nový komplexní přístup k vyhodnocení potenciálních zásob u ložisek tohoto a obdobných genetických typů. Průzkumné práce jsou i několik desetiletí staré, jsou, z dnešního pohledu, nedostatečného rozsahu a navíc ne vždy informace geochemického průzkumu splňují požadavky kladené a na aktuálně používané analytické metody.

Současně navržená, a výše popsaná metodika, řeší ekonomický aspekt nasazených softwarových postupů. Ve srovnání s dnes již běžně ve světě užívanými komplexními softwarovými řešeními, jejichž investiční náklady se pohybují v řádech vyšších 100 tisíců, včasto až prvních milionů korun, dosahují náklady na nákup komerčního, zde navrženého a použitého softwaru, prvních desítek tisíc korun. Tyto náklady jsou tedy adekvátní malému rozsahu potenciálních ložisek kritických surovin, které jsou předmětem řešení v rámci projektu CEEMIR TAČR.

4. Popis uplatnění Certifikované metodiky

Potenciální uplatnění navržené metodiky vyplývá v zásadě z toho, co bylo řečeno v 1. odstavci předchozí 3. kapitoly. Je tedy určena pro ty eventuální ekonomické subjekty, které potřebují, i přes absenci optimálního a současným analytickým metodám odpovídajícího průzkumu, vyhodnotit potenciál již opuštěných, dříve např. i pro jinou komoditu těžených ložiskových objektů. Na základě takto

připraveného 3D modelu ložiska, včetně distribuce zrudnění, rozhodnout o dalším postupu a to s minimalizovanými investiceni do softwarového vybavení.

5. Ekonomické aspekty

Jak již bylo uvedeno výše, celkové náklady na zavedení předloženého metodického postupu nepřesáhnou 100 tisíc korun. Pro realizaci je nezbytné zakoupit software od firmy Golden software Surfer a Voxler. Aktuální ceny těchto dvou software jsou 850 \$ za Surfer verze 15 a 480 \$ za Voxler verze 4.

Ekonomický přínos nelze přesně vyčíslit, protože je závislý na množství a aktuální ceně zpracovávané komodity. Srovnání lze provest pouze vůči jiným dnes komerčně používaným postupům výpočtu zásob. Mnoho společností využívá software, které požadují výkonný hardware a mnoho vstupních údajů. Ceny těchto softwarů přesahují první miliony korun. Mnohem vyšší náklady v desítek až sotvkách miliónů korun jsou u těchto komerčních postupů vynakládány na pořízení nových dat. Bez dostatečného množství některých dat nejsou tyto softwary schopny výpočet zásob provést.

Další ekonomický přínos předkládané metodiky spočívá v možnosti provést výpočet zásob i bez možnosti pořízení nových dat. V některých případech získaní nových dat není z různých důvodů možné.

T A Č R

Literatura

- [1] Deutsch, C., V., Journel, A., G.: GSLIB Geostatistical Software Library and User's Guide. Second Edition. New York, Oxford University Press, Oxford, 1998, 369 s.
- [2] Goovaerts, P.: Geostatistics for natural resources evaluation. Oxford University Press, 1997, 483 p.
- [3] Grygar, R., Staněk, F., Jelínek, J., Staňková, J. (2018): ZPRÁVA O SPLNĚNÍ MILNÍKU WP4/4. *MS, CEEMIR VŠB-TU Ostrava, 2017, 118 s.*
- [4] Journel, A., G., Kyriakidis, P., C.: Evaluation of Mineral Reserves. A Simulation Approach. Oxford University Press, 2004, 216 p.
- [5] Ondřík, J., Hájek, A., Šenk, B., Hlisnikovský, K., Toman, F.: Studie proveditelnosti otvírky ložiska Brzkov - Souhrnná zpráva. GEAM Dolní Rožínka, 2014, 128 s.
- [6] REMY, N., BOUCHER, A., WU, J.: Applied geostatistics with SGeMS: a user's guide. New York: Cambridge University Press, 2009, xix, 264 p.

Seznam obrázků

Obr. 1: Strukturně-geologické schéma širší oblasti ložiska Brzkov (Ondřík et al., 2014).	2
Obr. 2: Strukturně-geologická mapa úseku Brzkov dle podkladů DIAMO.	3
Obr. 3: Geologický řez ložiskem Brzkov, úsek Brzkov dle podkladů DIAMO (legenda viz obr. 2)	4
Obr. 4: Ukázka tabulky OBJEKT po zpracování bodů 1 a 2.	9
Obr. 5: Ukázka tabulky Collars.	10
Obr. 6: Ukázka tabulky Samples	11
Obr. 7: Ukázka tabulky Trajectories.	11
Obr. 8: Zobrazení průzkumných děl s proporcionálním zobrazením uranu (ppm) ve vzorcích vstupujících do	
výpočtu (včetně povrchu) v prostředí Voxler.	12
Obr. 9: Výsledek zpracování vzorků záporné délky makrem XYZ data Ink pro vybraný úsek díla BR1-31 v	
prostředí Voxler (vlevo). Vpravo nahoře odpovídající vstupní údaje tabulky Samples, vpravo uprostřed odpovídající	cí
vstupní údaje tabulky Trajectories a vpravo dole výsledné údaje tabulky Analyzy Ink.	13
Obr. 10: Lokalizované údaje obsahu uranu v prostředí Voxler	14
Obr. 11: Prostorově usazené patrové mapy ze čtvř výškových úrovní a geologické řezy	15
Obr. 12: Prostorově zobrazená data uranového zrudnění z vrtů a důlních děl rozdělená do 4 tříd. 1. třída 0-10 ppm	U
(světle modré body) 2 třída 10-100 ppm U (zelené body) 3 třída 100-1 000 ppm U (oranžové body) 4 třída	č
1 000-200 000 ppm U (červené body). Stanovený zájmový polygon je zobrazen červenou baryou.	15
Obr. 13: Pozice vzorků uranového zrudnění (červené křížky), důlní činností vymanovaného zrudnění v úrovni	10
427 m n m (oranžová linie) průběh dvou tektonický zón (modré linie) a vytvořených obvodových polygonů dvou	1
modelovaných těles (červené a fialové linie).	16
Obr. 14: Pozice vzorků uranového zrudnění tříd 2 – 4. vertikálních a horizontálních důlních děl a deseti	10
modelovaných těles uranového zrudnění. Svým rozsahem neivětší modelované těleso procházející z povrchu až do	,
hloubky 210 m n m je vyznačeno červeně	17
Obr. 15: Pozice po 10 m horizontálně odsazených obvodových polygonů modelovaných těles.	18
Obr. 16: Strukturní model zachycující deset modelovaných těles uranového zrudnění, důlní díla a průběhy	
významných zlomových zón (modré plochy).	18
Obr. 17: Obvodové polygony tělesa E uranu vyexportované ze strukturního modelu ve výškových úrovních 220 až	
550 (od světle zelené, přes tmavě zelenou, modrou, fialovou, červenou až po černou) s krokem 10 m.	20
Obr. 18: Vybrané 10 cm úseky s analýzami uranu uvnitř tělesa	21
Obr. 19: Zobrazení topologie tělesa uranu v prostředí Voxler.	$\frac{-}{22}$
Obr. 20: Úvodní okno programu Uran Teleso po spuštění.	22
Obr. 21: Okno programu Uran Teleso pro zadání vstupních parametrů.	23
Obr. 22: Kontrola vstupních parametrů adresářů a souborů	$\frac{-}{23}$
Obr. 23: Kontrola vstupních parametrů pro odhad zásob a vizualizaci	$\frac{-}{23}$
Obr. 24: Okno programu Uran Teleso po potvrzení vstupních parametrů	-0 24
Obr. 25: Zobrazení vstupních dat tělesa uranu v prostředí SGeMS.	25
Obr. 26: Ukázka statistického zpracování v prostředí SGeMS - histogram četností úseků obsahu uranu (ppm) a	
základní statistické charakteristiky (vlevo ze všech dat. vpravo vybraná data uvnitř tělesa)	26
Obr. 27: Ukázka statistického zpracování v prostředí SGeMS – lineární závislost obsahu uranu (ppm) na Z (m n.m.	.)
všech dostupných úseků obsahu uranu a základní statistické charakteristiky.	ź6
Obr. 28: Ukázka statistického zpracování v prostředí SGeMS – lineární závislost obsahu uranu (ppm) na Z (m n.m.	.)
úseků obsahu uranu uvnitř tělesa a základní statistické charakteristiky.	27
Obr. 29: Zobrazení vstupních dat tělesa uranu v prostředí Voxler.	$\frac{-}{28}$
Obr. 30: Zadané parametry elipsoidu anizotropie a parametrů IDW pro 3D gridování pro úrovně 220, 230 a 240 m	-
n.m. (objekt Gridder pod 250)	29
Obr. 31: Zadané parametry geometrie gridu pro 3D gridování pro úrovně 220, 230 a 240 m n.m. (objekt	
Gridder pod 250)	29
Obr. 32: Zadané parametry výběru vzorků pro 3D gridování pro úrovně 220, 230 a 240 m n.m. (objekt Gridder po	d
250)	30
Obr. 33: Zadané parametry elipsoidu anizotropie a parametrů IDW pro 3D gridování pro úrovně od 250 m n.m.	
(objekt Gridder od 250).	30
Obr. 34: Zadané parametry geometrie gridu pro 3D gridování pro úrovně od 250 m n.m. (objekt Gridder od 250).	31
Obr. 35: Zadané parametry výběru vzorků pro 3D gridování pro úrovně od 250 m n.m. (objekt Gridder_od 250)	31

т	Α
Č	R

Obr. 36: 3D grid obsahu uranu	32
Obr. 37: Export souborů U 001.grd až U 030.grd z objektu Gridder pod 250 (vlevo) a export souborů U 031.	grd
až U 338.grd z objektu Gridder od 250 (vpravo).	32
Obr. 38: Vizualizace hodnot obsahu uranu (ppm) v tělese v prostředí Voxler	33
Obr. 39: Vizualizace hodnot obsahu uranu (ppm) v tělese v prostředí SGeMS	34
Obr. 40: Histogram četností a základní statistické charakteristiky obsahu uranu (ppm) vypočtených hodnot 3D g	gridu
(bloků 1*1*1 m) tělesa	35
Obr. 41: Histogram četností a základní statistické charakteristiky obsahu uranu (ppm) upravených vypočtených	
hodnot 3D gridu (bloků 1*1*1 m) tělesa.	36
Obr. 42: Vizualizace hodnot obsahu uranu (ppm) objektu U_upr v tělese v prostředí SGeMS	36
Obr. 43: Základní parametry tvorby 3D gridu tělasa – upravené hodnoty	37
Obr. 44: Zadané parametry geometrie gridu pro 3D gridování upravených hodnot	38
Obr. 45: Zadané parametry výběru vzorků pro 3D gridování upravených hodnot	38
Obr. 46: Vizualizace 3D gridu upravených hodnot v prostředí Voxler	38
Obr. 47: Export souborů U_001.grd až U_338.grd z objektu Gridder	39
Obr. 48: Transformace vstupních hodnot obsahu uranu (ppm) tělesa do NNR (objekt U_NNR) v prostředí SGeM	ЛS.
	40
Obr. 49: Histogram četností a základní statistické charakteristiky vstupních dat tělesa transformovaných do NN	R. 40
Obr. 50: 3D grid obsahu uranu v NNR	41
Obr. 51: Export souborů U_NNR_001.grd až U_ NNR_030.grd z objektu Gridder_pod 250 NNR (vlevo) a expo	ort
souborů U_NNR_031.grd až U_NNR_338.grd z objektu Gridder_od 250 NNR (vpravo)	42
Obr. 52: Program Uran_Teleso, modul Výpočet hodnot 3D gridu tělesa v NNR	42
Obr. 53: Zpětná transformace 3D gridu hodnot tělesa v NNR do původní distribuce vstupních hodnot obsahu ur	anu
(ppm) (objekt U_NNR_zpet) v prostředí SGeMS	43
Obr. 54: Histogram četností a základní statistické charakteristiky obsahu uranu (ppm) vypočtených hodnot 3D g	gridu
(bloků 1*1*1 m) tělesa po zpětné transformaci z NNR	44
Obr. 55: Základní parametry tvorby 3D gridu tělasa – hodnoty transformované z NNR	45
Obr. 56: Zadané parametry geometrie gridu pro 3D gridování – hodnoty transformované z NNR.	45
Obr. 57: Zadané parametry výběru vzorků pro 3D gridování – hodnoty transformované z NNR	45
Obr. 58: Vizualizace 3D gridu hodnot transformovaných z NNR v prostředí Voxler.	46
Obr. 59: Vízualizace horizontálního řezu 402.5 m.n.m. (soubor 188_402.5m_2D.srf), varianta 1 v prostředí Sur	feru.
	48
Obr. 60: Vizualizace horizontalniho rezu 402.5 m.n.m. (soubor 188_402.5m_2D.srf), varianta 2 v prostředi Sur	teru.
$Oh_{1} (1, V_{1}) = 1 = 1 = 0 $	49
Obr. 61: Vizualizace vertikalnino rezu XZ 1115600 (JTSK) (soubor vertXZ_1115600_2D.srt), varianta 1	F 1
V prostredi Surferu	51
Obr. 62: Vizualizace Vertikalnino rezu XZ 1115600 (JTSK) (soubor VertXZ_1115600_2D.srt), varianta 2	50
v prostredi Surieru. $(2, V)$ ($(2, V)$) ($(1, 1)$) ($(1, 2)$) ($(2, 1)$) ($(1, 2)$) ($(2, 1)$) (
Obr. 65: vizuanzace vertikalniho rezu YZ 656810 (JTSK) (soubor vertYZ_656810_2D.srl), varianta I v prosu	
Surieru.	33 Kadi
Obr. 64. vizualizace vertikalniho rezu 12.656810 (JTSK) (soubor vert12_656810_2D.srl), varianta 2.v prosu	2edi 54
Our 65. Vizualizada akashu uzanu (ValDandar) yarianta 1	34
Obr. 65: Vizualizace obsahu uranu (VolRender), varianta 1	33
Our. ou. vizualizace ousallu ulallu (volkelluer), vallalla 2	30 57
Our. 07. vizualizace rezu telesa - obsaliu uranu (Ormorniage), varianta 2) / 50
Our. oo. vizualizate rezu teresa - ousanu uranu nad 5000 ppm (kosurfaca), varianta 1	30
Obr. 70: Vizualizace obálky tělesa s obsahem uranu nad 5000 ppm (Isosurface), varianta 2	39 60
Oor. 70. vizuanzace obarky teresa s obsaneni uranu nau 3000 ppin (1505urrace), varranta z	00

Seznam tabulek

Tabulka 1: Část údajů tabulky OBJEKT	6
Tabulka 2: Část údajů tabulky krvzor.	6
Tabulka 3: Část údajů tabulky radian	7
Tabulka 4: Část údajů tabulky průzkumné vrty Polná	7
Tabulka 5: Část údajů souboru BRZKOV_SOURAD.xlsx.	8
Tabulka 6: Část údajů souboru BRZKOV_SOURAD.xlsm.	8
Tabulka 7: Část údajů tabulky Analyzy Ink	12
Tabulka 8: Ukázka části souboru 500mm.bln.	19
Tabulka 9: Ukázka části souboru 500.dat.	19
Tabulka 10: Počty 10 cm úseků s analýzami uranu ve výškových úrovních 220 až 550 m n.m. s krokem 10 m	21
Tabulka 11: Ukázka části souboru Teleso_Uran_GSLIB.dat ve formátu GSLIB pro vstup do prostředí SGeMS	25
Tabulka 12: Část údajů souboru Teleso_3D_grid_hodnoty.dat.	33
Tabulka 13: Část údajů souboru Teleso_3D_grid_hodnoty_GSLIB.dat	34
Tabulka 14: Odhad zásob	34
Tabulka 15: Část údajů souboru Uran_3D_grid_upr.out	37
Tabulka 16: Část údajů souboru Uran_3D_grid_upr.dat	37
Tabulka 17: Odhad zásob – varianta 1	39
Tabulka 18: Část údajů souboru Teleso_Uran_NNR.out	41
Tabulka 19: Část údajů souboru Teleso_Uran_NNR.dat	41
Tabulka 20: Část údajů souboru Teleso_3D_grid_NNR_hodnoty.dat	43
Tabulka 21: Část údajů souboru Teleso_3D_grid_NNR_hodnoty_GSLIB.dat	43
Tabulka 22: Část údajů souboru Uran_Teleso_3D_NNR_zpet.out.	44
Tabulka 23: Část údajů souboru Uran_Teleso_3D_NNR_zpet.dat	44
Tabulka 24: Odhad zásob – varianta 2.	46

T A Č R

Obsah

1.	Obsah	a závazná struktura certifikované metodiky	1		
	1.1.	Cíl metodiky	1		
2. Popis vlastní metodiky			1		
	2.1.	Geologický popis ložiska uranu Brzkov	1		
	2.2.	Metodické postupy a algoritmy tvorby a vizualizace 3D modelu ložiska uranu Brzkov	5		
	2.2.1.	Revize všech dostupných archivních materiálů, verifikace a korekce vstupních dat	6		
	2.2.2.	Výpočet a vizualizace prostorové lokalizace vstupních dat	12		
	2.2.3.	Konstrukce 3D strukturního modelu	14		
	2.2.4.	Výpočet topologie 3D gridu tělesa uranu podle 3D strukturního modelu	19		
	2.2.5.	Základní statistické zpracování obsahu uranu	24		
2.2.6. Zobrazení vstupních dat ložiska uranu ve 3D v prostředí Voxler, stanovení elipsoidů anizot výběru dat, vytvoření 3D gridů obsahu uranu a export 2D gridů v jednotlivých horizontech ve formá 27			r.		
	2.2.7.	Odhad zásob na základě 2D gridů technologických parametrů a jejich převedení do 3D gridu	32		
	2.2.8.	Vizualizace horizontálních řezů ve 2D v prostředí Surfer (program Uran_Teleso)	47		
	2.2.9.	Vizualizace sítě vertikálních řezů ve 2D v prostředí Surfer (program Uran_Teleso)	49		
	2.2.10.	Vizualizace technologických parametrů ve 3D v prostředí Voxler	54		
	2.3.	Závěr	61		
3.	Srovna	ání "novosti postupů"	61		
4.	Popis	uplatnění Certifikované metodiky	61		
5.	Ekono	mické aspekty	62		
Li	teratura.		63		
Se	Seznam obrázků				
Se	beznam tabulek				
0	Dbsah				