

T A Č R

Metodika tvorby a vizualizace 3D modelu ložiska kaolinu Jimlíkov - východ

1. Obsah a závazná struktura certifikované metodiky

Obsah a závazná struktura certifikované metodiky je zpracována ve smyslu "Metodického postupu pro zpracování a uplatnění výsledků výzkumu a vývoje typu "Nmet – Certifikovaná metodika" Zákona č. 130/2002 Sb., o podpoře výzkumu, experimentálního vývoje a inovací z veřejných prostředků.

1.1. Cíl metodiky

Prostorové modelování ložisek vychází z nutnosti, v rámci dostupných strukturně-geologických, geochemických a ložiskově-technologických parametrů, sestavit co nejvěrnější obraz dané ložiskové struktury a v jejím rámci následně vyhodnotit 3D distribuci konkrétního zrudnění v rámci výrazně heterogenního geologického prostředí. Zásadním problémem je přitom mj. absence jednotné, a moderním analytickým metodám odpovídající, vstupní databáze parametrů nezbytných pro výpočtové modely. Pro vybraná modelová ložiska kritických surovin, analyzovaná v rámci pracovního balíčku WP4, byla k dispozici data z 80., 70. let a v řadě případů ještě starších etap geologických průzkumných prací minulého století. Tato skutečnost je jedním z důvodů, proč není možno, bez dodatečného moderního ložiskového průzkumu, pro splnění daných cílů využít celosvětově využívaných softwarových řešení, nehledě na fakt že, pro analyzovaná malá ložiska, jakým je i ložisko Jimlíkov – Východ, jsou všechny tyto softwary velmi drahé, a pro daná malá ložiska tedy potenciálně neekonomické.

Základem našeho navrhovaného postupu tedy bylo vytvořit, s dílčím využitím existujících, ekonomicky akceptovatelných a komerčně dostupných softwarových aplikací, takové komplexní 3D modely morfologie vybraných ložisek, včetně prostorové distribuce ložiskově - technologických parametrů, které by s využitím možností 3D počítačové grafiky a virtuální reality umožňovalo variabilní výpočet zásob a případný následný projekt otvírky konkrétního ložiska.

2. Popis vlastní metodiky

2.1. Obecná část – popis ložiska

V rámci milníku CEEMIR WP4/3 byla mj. zpracováno ložisko kaolinu Jimlíkov – východ. Cílem milníku WP4/3 je pro toto ložisko vypracovat metodických postup a algoritmizaci modelování a současně vytvořit software pro zajištění kompatibility použitých programů komerčních programů. Dalším cílem je, na základě modelování strukturně-tektonických poměrů a modelování prostorového rozložení sledovaných technologických atributů, vytvořit vizualizaci modelů ložiska ve 2D a ve 3D.

V procesu modelování jsou využívány běžně dostupné programové prostředky: *MS Excel*, programy *Surfer* a *Voxler* firmy Golden Software [http://www.goldensoftware.com/] a open-source program *SGeMS* (Stanford Geostatistical Modeling Software) [http://sgems.sourceforge.net/], [3]. Pro tvorbu speciálních programových aplikací byly použity programovací jazyky: pro tvorbu maker v *MS Excelu* jazyk *Visual Basic for Applications (VBA)* a pro tvorbu samostatných programů jazyk *Visual Basic.* Zdrojové texty programových aplikací (u hlavních programů spolu s popisem jejich ovládání) jsou dostupné v příslušné komplexní zprávě přílohách této zprávy [2].

Předkládané metodické postupy jsou vytvořeny tak, aby se jejich jednotlivé kroky mohly automaticky (pomocí speciálně k tomuto účelu vyvinutého software) rychle přepočítat při změně nebo doplnění vstupních údajů a parametrů výpočtu, případně aby bylo možno lehce vytvořit více variant řešení pro různé vstupní parametry.

Ložisko kaolinu Jimlíkov – východ se nachází v centrální, chodovsko-starorolské části terciérní sokolovské pánve. Sokolovská pánev je součástí rozsáhlé podkrušnohorské příkopové propadliny. Od pánve chebské na západě je oddělena krystalickým hřbetem Chlumu sv. Máří, předěl vůči pánvím severočeským (resp. pánvi mostecké), na východě tvoří hranici vulkanity Doupovských hor.

Převážnou část podloží sokolovské pánve tvoří karlovarský masiv, který je součástí rozsáhlého krušnohorského plutonu, v němž jsou rozlišovány dva hlavní intruzívní komplexy - starší žuly horské a mladší žuly krušnohorské (rudohorské, autometamorfované). Obecně platí, že z mladších krušnohorských žul vznikly kvalitnější kaoliny (například ložiska Sedlec, Bohemia, Podlesí) než ze žul horských, které jsou mateční horninou méně kvalitních kaolinů, obvykle s vyšším obsahem titanu - titaničité kaoliny [10]. Bázi ložiska Jimlíkov – východ tvoří horizont zastoupený mladšími krušnohorskými žulami. V závěrečných zprávách [10 a 4] je za krystalické podloží označována slabě kaolinizovaná až čerstvá žula s obsahem jílové frakce pod cca 8 %.

Ložiska kaolinu vznikla kaolinizací zmíněných granitů v období křída až paleogén. Jde o pozůstatky původní zvětralinové kůry, které byly uchovány před denudací. Intenzita kaolinizace s hloubkou klesá. Toho bylo využito při rozdělení kaolinového profilu, který sestává ze tří primárních zón (Kukla 1959). Lze k nim přiřadit i zónu sedimentární, což jsou ekonomicky využitelné kaolinitové jíly a kaolinické písky (sekundární kaolin) starosedelského souvrství [10. Hlavním ukazatelem členění horizontů je obsah kaolinu. Za technologicky využitelnou se zpravidla považuje surovina s obsahem kaolinové frakce nad 15 %. Vzhledem k tomu se používá toto členění i v geologické dokumentaci:

- reziduální kaolin s výplavem nad 15 % dokonale kaolinizovaná žula (označovaná v dokumentaci T10), živce a biotit zcela nebo částečně rozloženy - přibližně svrchní a střední zóna kaolinizace;
- reziduální kaolin s výplavem v rozsahu od cca 8 až do 15 % nedokonale kaolinizovaná žula (označovaná v dokumentaci T9) – cca spodní zóna kaolinizace;
- slabě kaolinizovaná až čerstvá žula s obsahem jílové frakce pod cca 8 %.

Podle [10] má kaolin na ložisku charakteristické vlastnosti v chemickém složení, technologických vlastnostech i mineralogickém složení. Všechny tyto vlastnosti mají vztah k matečné hornině. Matečnou horninu reprezentují dvě základní facie horské žuly:

- biotitická až dvojslídná žula, afyrická (stejnoměrně zrnitá), středně až hrubě zrnitá, leukokratního charakteru;
- biotitická aplitická žula, jemnozrnná, tvořící žilná tělesa v předchozím typu.

Ve vzorcích žul z podloží ložiska lze vypozorovat sukcesi proměn:

- sericitizace plagioklasu + chloritizace biotitu;
- kaolinizace plagioklasu + baueritizace biotitu;
- zakalení K-živců + kaolinizace biotitu;
- limonitizace biotitu.

Surový kaolin obsahuje silně až zcela kaolinizované plagioklasy. Draselné živce jsou částečně zachovány a v původním omezení. Biotit je vybělen (baueritizován), částečně zachován. Jeho obsah u většiny vzorků přesahuje 10 %.

Základní surovinou na ložisku Jimlíkov-sever jsou keramické kaoliny. Mezi keramické kaoliny patří kaolin pro výrobu porcelánu KJ, kaolin titaničitý KT a kaolin pro ostatní keramický průmysl KK. Podle vlastností kaolinového výplavu se surovina dále dělí do jakostních druhů.

Morfologie ložiska není příliš proměnlivá. Ložisko kaolinu má prakticky vodorovný nebo jen mírně zvlněný průběh. Pouze velká technologická variabilita suroviny v něm vymezuje značně proměnlivé mocnosti zásob. V jihovýchodní části ložiska granit takřka vystupuje k povrchu (obr. 13). Mocnost ložiska kaolinu se pohybuje v rozmezí 20-25 m a jen výjimečně více (až 46,4 m - vrt JS7).

Relativně jednoduchá je i generální geologická stavba ložiska, neboť původní žulový povrch nevykazuje velké rozdíly v nadmořských výškách. V severní části zájmového ložiska probíhá poruchová zóna cca jz.sv. směru, která se projevuje tektonickým (příp. erozním) příkopem o šířce přibližně 100 m. Osa příkopu je zhruba ve směru vrtů JS125 - JSH135 – V228 – JS145. Severní okraj tvoří pravděpodobně dislokace s úklonem kolem 50° k jihovýchodu. Výška skoku se pohybuje v rozmezí 10 – 15 metrů. Jižní hranice je pravděpodobně ze západu tvořena také dislokací enchelon charakteru, která se v blízkosti vrtu JS 7 vytrácí. Její úklon se předpokládá k severozápadu pod úklonem 50°. Tento tektonický příkop má průběh odpovídající podélné tektonice oherského nebo také krušnohorského směru. V pánvi de vyskytuje také příčná tektonika směru SZ-JV, zjevně mladší, ale ta se na modelovaném ložisku nevyskytuje. Tektonická aktivita zájmových struktur trvala patrně celý terciér. Některé pohyby mohly přetrvat až do kvartéru (Tvrdý et al. 2014). Proto je většina ložiskových horizontů modelována jako tektonicky porušená výše zmíněnými zlomy.

Tektonický příkop je vyplněn vulkanickým materiálem a produkty uhelné sedimentace. Tato výplň odráží geologický vývoj sokolovské pánve v terciéru. Výplň sokolovské pánve vznikla ve třech sedimentačních etapách [9]:

- Eocén-oligocén: nejstarší etapa sedimentace se uplatnila na mnohem širším území, než je hlavní pánevní výplň. Bazální starosedelské souvrství vzniklo v podmínkách rychle se zahlubující pánve, má charakter splachů, vyskytují se zde kaolinické písky a jíly (sekundární kaolin) až dobře vytříděné pískové sedimenty. Místy jsou zastoupeny polohy křemitých pískovců až křemenců vzniklých silicifikací během kaolinizace podloží.
- Oligocén-miocén: uhlotvorná sedimentační etapa. Začíná sedimentací sloje Josef, která nasedá na starosedelské pískovce nebo přímo na kaolinické podloží. V závěru ukládání josefských vrstev nastupuje vulkanická činnost a začíná sedimentace vulkanogenních chodovských vrstev s tufitickými jíly, tufy a tufity (novosedelské souvrství). Následně dochází k sedimentaci uhlí, která směrem do nadloží sílí a dochází ke vzniku hlavního slojového pásma se slojemi Anežka a Antonín (sokolovské souvrství).
- Miocén-pliocén: jezerní sedimentace s převahou pelitů s vložkami pelokarbonátů (cyprisové souvrství).

V zájmové oblasti se setkáváme nad horizontem reziduálních kaolinů s polohami starosedelského souvrství, na kterém se místy zachovala uhelná sloj Josef. Na tuto polohu pak místy nasedají tufy a tufity novosedelského souvrství. Další popisované polohy zde nejsou dochovány. Na novosedelské souvrství nasedá přímo kvartér.

Kvartérní sedimenty jsou rozšířeny po celé sokolovské pánvi. Jsou představovány písčitými a hlinitými svahovinami a splachy starších hornin, méně často sprašovými hlínami. V okolí vodotečí jsou rozšířeny organické uloženiny, štěrky a štěrkopísky. Mocnost přirozeného kvartéru se pohybuje nejčastěji od desetin

po jednotky metrů. Nezanedbatelné je zastoupení antropogenních uloženin, zejména rozsáhlých výsypek z hnědouhelné těžby. V prostoru ložiska Jimlíkov mají kvartérní horniny mocnost kolem 2 m, lokálně až 8 m a výjimečně i přes 15 m. Zastoupeny jsou hlínami, jílovitými hlínami a jíly většinou hnědorudých barev. Technologicky byla ověřena vhodnost některých z nich jako cihlářské suroviny [9].

Ložisko cihlářských hlín je vázáno na výskyt relativně mocných kvartérních sedimentů v nadloží ložiska kaolínu. Kvartérní horniny zde dosahují místy mocnosti téměř 15,0 m. Ve svrchní části kvartérního souvrství převažují hlíny a jíly, místy s epiklastickou příměsí. Průměrná mocnost suroviny se pohybuje mezi 5,1-6,8 m.

2.2. Metodické postupy a algoritmy tvorby a vizualizace 3D modelu ložiska kaolinu Jimlíkov - východ

Na základě požadavků a dohody se Sedleckým kaolinem a.s. je základním inovativním fenoménem zpracování ložiska (a z něj vyplývajících metodických postupů) vytvoření aktivního, dynamického komplexního modelu, do něhož bude možno operativně doplňovat informace na základě prováděného těžebního průzkumu. V této kapitole jsou definovány jednotlivé kroky metodického postupu tvorby a vizualizace 3D modelu ložiska kaolinu Jimlíkov - východ. Tyto kroky na sebe navazují a v nich použité algoritmy zpracování údajů a vytvořený software jsou detailně popsány ve stejnojmenných podkapitolách:

- 2.2.1 Revize všech dostupných archivních materiálů.
- 2.2.2 Verifikace a korekce vstupních dat.
- 2.2.3 Výpočet a vizualizace prostorové lokalizace vstupních dat.
- 2.2.4 Základní statistické zpracování výplavu, Al2O3, Fe2O3, TiO2 a Al2O3+Fe2O3.
- 2.2.5 Modelování báze a stropu výskytu kaolinu a celkové litologie ložiska.
- 2.2.6 Zobrazení vstupních dat ložiska kaolinu ve 3D v prostředí *Voxler*, vytvoření 3D gridů obsahů technologických parametrů a export 2D gridů v jednotlivých horizontech ve formátu *Surfer* (program *Kaolin_A*).
- 2.2.7 Kategorizace bloků zásob na základě gridů technologických parametrů exportovaných programem *Kaolin_A* a zadaných parametrů kategorií zásob ve 2D, jejich převedení do 3D gridu a odhad zásob (program *Kaolin_Viz*).
- 2.2.8 Vizualizace horizontálních řezů ve 2D v prostředí Surfer (program Kaolin_Viz).
- 2.2.9 Vizualizace sítě vertikálních řezů ve 2D v prostředí Surfer (program Kaolin_Viz).
- 2.2.10 Vizualizace kategorií bloků zásob ve 3D v prostředí Voxler (program Kaolin_Viz).
- 2.2.11 Případné doplnění vstupních údajů na základě prováděného těžebního průzkumu a přechod ke kroku 2.6.

Jednotlivé kroky metodického postupu jsou realizovány tak, aby bylo možno při libovolné změně parametrů tyto kroky programově rychle přepočítat bez nutnosti zdlouhavých ručních postupů. Proto je také možné snadno provést modelování v několika variantách (například s použitím více variant parametrů gridování apod.).

T A Č R

2.2.1. Revize všech dostupných archivních materiálů

Od Sedleckého kaolinu a.s. byla převzata data ve formátu *xlsx* – tabulka *VRTY Jimlíkov*, celkem 1611 vzorků (ukázka viz tab. 1).

Tabulka 1: Část údajů tabulky VRTY Jimlíkov.

NAZEV_VKTU	×	T	4	CISLO_VZ	WETRAZ_OD	WETRAZ_DO	WIOCINOST	PL_KUZ_Z	PL_KUZ_UZ	PL_KOZ_000	PL_KOZ_SLI	PL_KOZ_KAU	ZINAIA_ZIN	AL205	FE203	1102	BELUSI	ZARUVZDUK IT	P AWW	VISKUZITA
J 89	1007425.92	855333.41 4	26.43	1	. 0.50	1.10	0.60	3.9	32.7	6.0	12.4	45.0	12.16	34.19	3.51	0.59	43.0	173.0 5	-1.0	1.00
J 89	1007425.92	855333.41 4	26.43	2	1.10	2.00	0.90	2.3	34.7	5.9	15.4	41.7	12.35	35.86	0.97	0.55	70.2	174.0 48	3 -1.0	-1.00
J 89	1007425.92	855333.41 4	26.43	3	2.00	4.20	2.20	1.8	30.6	6.3	15.1	46.2	12.76	36.36	1.62	0.44	62.4	174.0 4	-1.0	-1.00
J 89	1007425.92	855333.41 4	26.43	4	4.20	5.20	1.00	3.5	5 38.1	7.6	15.5	53.5	12.23	33.76	4.55	0.35	36.2	169.0 5	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	5	5.20	7.90	2.70	3.1	36.2	6.8	16.4	37.5	12.05	35.00	1.84	0.51	63.7	174.0 4	-1.0	1.00
J 89	1007425.92	855333.41 4	26.43	6	i 7.90	9.40	1.50	4.8	47.7	6.6	13.6	27.3	9.99	33.15	1.80	0.75	54.2	169.0 4	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	7	9.40	10.50	1.10	3.8	35.6	9.8	13.5	37.3	12.51	35.30	1.87	0.58	64.5	175.0 4	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	8	10.50	11.00	0.50	4.1	33.9	10.6	17.7	33.7	12.59	35.30	1.77	0.72	66.3	174.0 4	-1.0	-1.00
J 89	1007425.92	855333.41 4	26.43	9	11.00	13.00	2.00	2.9	36.5	13.8	14.2	32.6	12.66	34.99	2.19	0.76	61.6	173.0 4	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	10	13.00	15.70	2.70	1.7	36.1	14.8	16.1	31.3	12.35	34.17	2.26	0.71	60.8	172.0 4	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	11	. 15.70	16.20	0.50	3.2	42.6	11.4	15.4	27.4	11.87	35.14	1.79	0.34	64.7	174.0 4	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	12	16.90	18.90	2.00	2.4	44.3	14.2	14.3	24.8	12.18	34.40	2.49	0.78	59.7	171.0 5	-1.0	-1.00
J 89	1007425.92	855333.41 4	26.43	13	18.90	19.60	0.70	1.9	51.2	12.0	14.0	20.9	11.45	34.29	1.84	0.71	62.6	171.0 4	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	14	19.60	21.60	2.00	5.3	56.8	10.6	12.1	15.2	10.80	32.67	2.55	0.69	54.8	164.0 5	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	15	21.60	22.40	0.80	6.6	53.0	10.2	14.4	15.8	10.85	33.75	2.09	0.63	59.2	170.0 4	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	16	i 22.40	24.00	1.60	13.3	52.7	8.5	11.3	14.2	10.97	33.24	2.25	0.80	57.8	167.0 5	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	17	24.00	26.30	2.30	32.7	35.8	7.6	9.9	14.0	10.82	33.95	1.80	0.64	59.0	168.0 5	-1.0	-1.00
J 89	1007425.92	855333.41 4	26.43	18	26.30	28.00	1.70	46.4	28.8	4.7	7.6	12.5	11.34	35.07	1.25	0.38	61.5	174.0 5	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	19	29.50	31.70	2.20	51.9	28.7	5.3	7.0	7.1	9.07	30.68	1.69	0.52	53.3	157.0 5	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	20	31.70	34.00	2.30	57.6	5 24.0	4.5	6.9	7.0	9.61	32.27	1.51	0.51	62.8	165.0 5	-1.0	-1.00
J 89	1007425.92	855333.41 4	26.43	21	. 34.00	35.50	1.50	51.2	2 27.5	4.9	7.0	9.4	10.40	32.74	1.74	0.48	62.6	165.0 5	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	22	37.00	38.70	1.70	49.7	24.9	5.2	8.8	11.4	10.99	33.19	2.14	0.33	61.2	167.0 5	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	23	39.00	39.90	0.90	54.9	24.7	5.7	7.7	7.0	9.72	31.01	2.16	0.47	60.8	161.0 5	-1.0) -1.00
J 89	1007425.92	855333.41 4	26.43	24	40.20	41.90	1.70	50.0	31.0	6.1	7.4	5.5	8.91	28.59	2.84	0.57	54.6	155.0 5	-1.0) -1.00
J 131	1007416.97	855337.14 4	27.17	1	. 0.80	1.90	1.10	1.8	3 32.3	7.8	5.9	52.2	12.37	34.12	3.28	1.05	40.4	173.0 5	-1.0) -1.00
J 131	1007416.97	855337.14 4	27.17	2	1.90	2.30	0.40	4.7	33.8	6.0	6.4	49.1	11.97	34.70	2.87	0.68	42.3	174.0 5	-1.0) -1.00
J 131	1007416.97	855337.14 4	27.17	3	2.30	3.80	1.50	25.8	3 25.6	4.0	8.0	36.6	11.79	35.63	1.29	0.29	45.0	175.0 3	-1.0) -1.00
J 131	1007416.97	855337.14 4	27.17	4	3.80	5.00	1.20	17.9	32.7	5.7	9.9	33.8	10.93	35.07	1.11	0.32	48.3	174.0 3	-1.0	-1.00
J 131	1007416.97	855337.14 4	27.17	5	5.00	6.40	1.40	15.6	5 35.0	6.4	10.2	32.8	11.13	35.29	0.98	0.38	59.7	174.0 3	-1.0	-1.00
J 131	1007416.97	855337.14 4	27.17	6	6.40	9.00	2.60	11.8	36.6	7.0	11.2	33.4	9.88	34.42	1.29	0.33	57.6	173.0 4	-1.0	-1.00
J 131	1007416.97	855337.14 4	27.17	7	9.00	11.10	2.10	4.0	33.0	5.8	12.4	44.8	11.95	35.59	1.48	0.38	54.4	175.0 4	-1.0	-1.00

V názvech vrtů byly odstraněny mezery, neboť počet mezer byl u jednotlivých názvů vrtů různý. Nestanovené hodnoty (záporné) byly nahrazeny prázdnou buňkou (hodnota *null*). Pro modelování byly vybrány technologické parametry, které jsou nezbytné pro kategorizaci zásob a jsou stanoveny ve vzorcích většiny vrtů: obsahy (v %) výplavu, Al₂O₃, Fe₂O₃, TiO₂.

Zdrojem údajů a informací pro kontrolu vstupních dat byly především dostupné archivní materiály o lokalitě (viz tabulka 2) a Závěrečná zpráva geologického úkolu JIMLÍKOV-VÝCHOD [9].

Akce	Citace	Období	Čísla vrtů
Božičany	JADRNÍČEK et al. (1960)	1961-1960	V100 až V102, V106-V114, V117, V151- V154, V223, V227-V230, V318, V323 (celkem 25 vrtů)
Jimlíkov	KŘELINA et al. (1969)	1969	Jm3-Jm21 (celkem 19 vrtů)
Božičansko-sever	SKOPOVÝ et al. (1976)	1976	V515, O23 (celkem 2 vrty)
Jimlíkov II	HRZINA et al. (1985)	1975-1984	J89, J131, J141, J142, J146, J178, J179, J149, J183, J192, J193 (celkem 11 vrtů)
Jimlíkov-sever	TVRDÝ et al. (1986)	1985-1986	JS1-JS31 (celkem 31 vrtů)
Jimlíkov-sever II	NEUMANN et al. (1992)	1988-1990	JS104, JS107, JS117, JS120-JS125, JS128– JS134, JSH135, JSP136, JS137, JS138, JS140, JS142-JS168 (celkem 51 vrtů)

Tabulka 2: Přehled archivních vrtů v prostoru ložiska Jimlíkov-sever.

2.2.2. Verifikace a korekce vstupních dat

Verifikace vstupních dat byla prováděna konfrontací s archivními materiály a také s pomocí vizualizace (ve 2D a ve 3D) a srovnáním s příslušnými archivními horizontálními a vertikálními řezy (viz 2.1). Přitom byly zjištěny chyby, které byly způsobeny nejen překlepy souvisejícími s digitalizací archivních podkladů. Chybné údaje byly v maximální možné míře opraveny a prokonzultovány se zástupci Sedleckého kaolinu a.s.

Z archivních materiálů byly doplněny údaje vrtů J143, J145 a J147 v bezprostřední blízkosti ložiska. Byly vyřezeny vrty, které se nacházejí dál než 100 m od obvodového polygonu ložiska. Do výpočtu tak vstupují údaje z 85 průzkumných vrtů (obr. 1). Tyto údaje byly uloženy do listu *V_uzemi* souboru *Vyber_8_2016.xls*.

Obr. 1: Průzkumná díla vstupující do výpočtu v prostředí Surfer.

Nejprve je nutno zkontrolovat návaznost vzorků, aby se odhalily překryvy a případné chybějící úseky. Pro kontrolu návaznosti vzorků bylo vytvořeno makro *Kontrola_navaznosti [2]*.

Pro převod geometrických údajů průzkumných děl z listu *V_uzemi* do struktury nutné pro vstup do prostředí *Voxler* bylo vytvořeno makro *Vrty [2]*. Takto vzniklé údaje se překopírují do listu *Collars* (tab. 2), ze kterého se pak načítají programem *Voxler*.

Tabulka 3: Část údajů tabulky Collars

	-					
ID	Easting	Northing	Elevation	Azimuth	Dip	Depth
J141	-855192.19	-1007420.68	428.97	0	-90	30.5
J142	-855230.68	-1007406.81	428.57	0	-90	34.5
J146	-855215.86	-1007577.59	425.08	0	-90	46.5
J178	-855211.14	-1007526.83	426	0	-90	37.1
J179	-855200.59	-1007531.41	426.13	0	-90	58
J183	-855184.95	-1007629.14	425.47	0	-90	48
J192	-855142.41	-1007672.54	426.79	0	-90	29.5
J193	-855089.58	-1007702.09	428.22	0	-90	35.7
JM3	-855133.08	-1007954.56	426.57	0	-90	18
JM4	-855054.79	-1007614.76	429.29	0	-90	64.6
JM5	-854733.95	-1007982.38	444.45	0	-90	21
JM6	-854553.13	-1007761.95	444.52	0	-90	49.4
JM7	-854689.22	-1007715.51	440.13	0	-90	42

Podle vlastností kaolinového výplavu se keramické suroviny zařazují do tříd podle tabulky 4. Při určování jakostní třídy se postupuje od I. ke IV. skupině podle tabulky 5.

Třída	Výplav	Al_2O_3	Fe ₂ O ₃	TiO ₂	e ₂ O ₃ TiO ₂ Fe ₂ O ₃ +TiO ₂ Vypalovací barva		Použití
mua		[]	nmot. %	ot. %] [1410 °C]		[1410 °C]	POUZILI
K1	>15	>36,0	<0,9	<0,3	<1,1	bílá	
К2	>15	>36,0	<1,1	<0,4	<1,2	bílá až slabě nažloutlá	kaolin pro výrobu
K2A	>15	34,0-36,0	Ι	<0,5	<1,2	bílá až slabě nažloutlá	porcelánu (KJ)
K51	>10	>36,0	-	<0,3	<1,0	bílá	
K2B	>15	>36,0	-	>0,4	<1,6	bílá, bělavá	
КЗВ	>15	>36,0	Ι	>0,5	<2,0	bílá až slabě nažloutlá	kaolin titaničitý (KT)
K4B	>15	>34,0	_	>0,5	<2,5	bílá až slabě nažloutlá	
К3	>15	>34,0	-	<0,5	<1,6	žlutá, světle šedá	kaolin pro ostatní
K4J*	>35	>34,0	-	-	<5,0	světlé odstíny	keramický průmysl
К4	>15	-	_	-	<3,0	světlé odstíny	(КК)
K5	>10	-	-	-	>3,0	-	nevhodný kaolin
)*	K4J je r	nová třída k	aolinu s	vysok	ým výplaven	1	

Tabulka 4: Vlastnosti keramických kaolinů na Karlovarsku (Tvrdý J. et al., 2014).

Tabulka 5: Jakostní třídy keramických kaolinů (Tvrdý J. et al., 2014).

Skupina	Jakostní třídy - keramický kaolin	Hodnocení
	K1, K2, K2A, K2B	bilanční surovina
	K3, K3B, K51	blianchi surovina
III	K4J, K4B, K4	nebilanční surovina
IV	К5	nevhodná surovina

V tabulce *V_uzemi* byl doplněn sloupec Fe+Ti (součet FE2O3 a TIO2), neboť je to jedno z kritérií pro zařazování vzorků do tříd podle tab. 4. Pro zařazení vzorků do tříd podle tab. 4 bylo vytvořeno makro *Kategorie* (viz [2]), které v tabulce *V_uzemi* doplní sloupec KAT_VYP (třída - kategorie vypočtená) a KAT_CISLO (číslo kategorie). Vztah mezi číslem kategorie a kategorií je obsahem tab. 6.

Číslo kategorie	Třída - kategorie
1	NEG (negativní, K5)
2	K4
3	K4J
4	K3
5	K4B
6	K3B
7	K2B
8	K51
9	K2A
10	K2
11	K1

Tabulka 6: Vztah mezi číslem kategorie a kategorií kaolinů.

Tabulka V_uzemi obsahuje celkem 1098 vzorků (ukázka viz tab. 7). Počty vzorků podle kategorií jsou obsahem tab. 8.

Tabulka 7: Část údajů tabulky V_uzemi.

NAZEV_VRTU	л х	Y	z	CISLO_VZ	METRAZ_OD	METRAZ_DO	MOCNOST	PL_ROZ_2	PL_ROZ_02	PL_ROZ_006	PL_ROZ_SLI	PL_ROZ_KAO	ZTRATA_ZIH	AL2O3	FE2O3	TIO2 E	BELOST Z	ARUVZDOR TYP AM	MM VISKOZITA Fe+Ti KAT_VYP	KAT_CISLO
J141	1007420.68	855192.19	428.97	2	19.40	22.00	2.60	36.1	31.7	6.2	6.6	19.4	11.26	33.63	1.67	0.52	57.4	169.0 4	2.19 K4	2
J141	1007420.68	855192.19	428.97	3	22.00	24.50	2.50	33.9	34.4	8.2	5.2	18.3	11.13	33.79	1.97	0.72	60.0	169.0 4	2.69 K4	2
J141	1007420.68	855192.19	428.97	4	24.50	27.00	2.50	25.5	41.1	7.9	6.7	18.8	10.27	32.09	2.25	0.93	59.7	165.0 5	3.18 NEG	1
J141	1007420.68	855192.19	428.97	5	27.00	29.00	2.00	15.9	41.2	7.5	8.0	27.4	8.76	27.95	2.68	0.88	47.9	157.0 5	3.56 NEG	1
J141	1007420.68	855192.19	428.97	6	29.00	30.50	1.50	11.9	42.3	6.7	8.9	30.2	7.77	26.76	2.42	0.85	50.8	157.0 5	3.27 NEG	1
J142	1007406.81	855230.68	428.57	1	18.70	21.40	2.70	4.9	52.7	7.0	6.6	28.8	12.01	34.42	1.34	1.08	63.0	175.0 4B	2.42 K4B	5
J142	1007406.81	855230.68	428.57	2	21.40	24.00	2.60	18.0	43.6	7.5	6.8	24.1	10.03	31.85	1.59	0.92	58.5	167.0 4	2.51 K4	2
J142	1007406.81	855230.68	428.57	3	24.00	26.50	2.50	23.8	41.2	7.3	6.8	20.9	9.23	31.14	1.58	0.73	57.8	165.0 4	2.31 K4	2
J142	1007406.81	855230.68	428.57	4	26.50	29.00	2.50	24.8	42.0	7.3	6.2	19.7	9.21	31.13	1.86	0.59	56.7	165.0 4	2.45 K4	2
J142	1007406.81	855230.68	428.57	5	29.00	30.50	1.50	41.4	30.8	6.8	6.5	14.5	8.88	29.85	2.19	0.48	58.6	161.0 4	2.67 NEG	1
J142	1007406.81	855230.68	428.57	6	30.50	32.60	2.10	32.0	37.4	7.6	6.5	16.5	10.08	31.03	2.57	0.72	57.3	165.0 5	3.29 NEG	1
J142	1007406.81	855230.68	428.57	7	32.60	32.80	0.20	8.0	50.2	5.0	9.8	27.0	10.81	33.61	1.00	0.13	67.2	175.0 4	1.13 K4	2
J142	1007406.81	855230.68	428.57	8	32.80	34.50	1.70	44.0	29.4	6.1	6.1	14.4	9.91	32.14	1.81	0.49	61.2	167.0 5	2.30 NEG	1
J146	1007577.59	855215.86	5 425.08	1	22.20	24.00	1.80	16.7	24.2	10.9	14.4	33.8	11.86	32.74	0.66	0.32	51.8	175.0 4	0.98 K4	2
J146	1007577.59	855215.86	5 425.08	2	24.00	26.00	2.00	18.2	22.1	8.7	13.9	37.1	9.72	25.39	0.70	0.28	43.7	169.0 4	0.98 K4	2
J146	1007577.59	855215.86	5 425.08	3	26.00	28.00	2.00	20.9	28.3	7.6	9.6	33.6	11.94	32.43	0.78	0.39	46.3	175.0 4	1.17 K4	2
J146	1007577.59	855215.86	425.08	4	28.00	29.50	1.50	18.2	31.7	9.0	10.8	30.3	12.11	33.71	0.77	0.46	52.6	175.0 4	1.23 K4	2
J146	1007577.59	855215.86	425.08	5	29.50	31.40	1.90	13.1	36.6	8.5	10.9	30.9	12.03	34.20	0.83	0.39	52.3	175.0 4B	1.22 K3	4
J146	1007577.59	855215.86	425.08	6	31.40	32.50	1.10	5.5	40.5	9.8	12.3	31.9	12.26	35.62	0.82	0.42	62.7	175.0 4B	1.24 K3	4
J146	1007577.59	855215.86	5 425.08	7	32.50	34.00	1.50	13.3	36.3	7.5	12.8	30.1	10.67	32.79	1.00	0.43	64.6	173.0 4B	1.43 K4	2
J146	1007577.59	855215.86	5 425.08	8	34.00	36.00	2.00	7.3	41.2	10.6	13.2	27.7	12.01	35.29	0.97	0.31	74.8	175.0 4B	1.28 K3	4
J146	1007577.59	855215.86	5 425.08	9	36.00	37.90	1.90	22.7	37.1	7.9	11.4	20.9	11.13	34.91	0.96	0.42	75.8	175.0 4B	1.38 K3	4
J146	1007577.59	855215.86	5 425.08	10	37.90	39.00	1.10	10.9	44.1	7.5	9.2	28.3	10.59	32.83	1.56	0.64	65.0	171.0 4	2.20 K4	2
J146	1007577.59	855215.86	5 425.08	11	39.00	41.00	2.00	31.8	41.3	5.3	7.2	14.4	11.06	33.85	1.04	0.36	71.0	175.0 5	1.40 NEG	1
J146	1007577.59	855215.86	5 425.08	12	41.00	43.00	2.00	38.6	30.7	6.5	7.7	16.5	19.43	30.83	1.51	0.48	69.8	173.0 4	1.99 K4	2
J146	1007577.59	855215.86	5 425.08	13	43.00	45.00	2.00	32.2	41.0	6.6	7.1	13.1	11.15	33.51	1.96	0.72	68.9	173.0 5	2.68 NEG	1
J146	1007577.59	855215.86	5 425.08	14	45.00	46.50	1.50	41.1	34.9	5.4	6.6	12.0	10.51	33.34	1.94	0.61	66.6	171.0 5	2.55 NEG	1
J178	1007526.83	855211.14	426.00	1	23.40	24.30	0.90	8.4	44.0	9.1	11.0	27.5	12.94	35.85	1.39	0.35	72.9	177.0 4	1.74 K4	2
J178	1007526.83	855211.14	426.00	2	24.30	25.60	1.30	3.3	41.4	12.3	16.7	26.3	10.43	30.41	1.36	0.72	59.2	163.0 4	2.08 K4	2
J178	1007526.83	855211.14	426.00	3	25.60	26.50	0.90	18.0	49.5	8.8	12.3	11.4	11.39	33.24	1.22	0.53	67.3	163.0 5	1.75 NEG	1
J178	1007526.83	855211.14	426.00	4	26.50	28.50	2.00	45.3	31.8	4.7	7.9	10.3	9.99	31.28	1.22	0.63	58.6	163.0 5	1.85 NEG	1
J178	1007526.83	855211.14	426.00	5	28.50	30.60	2.10	26.9	43.6	5.8	11.2	12.5	11.40	33.13	1.17	0.53	49.4	163.0 5	1.70 NEG	1
J178	1007526.83	855211.14	426.00	6	30.60	31.30	0.70	5.9	47.6	14.0	10.6	21.9	10.61	32.59	1.37	0.71	39.4	163.0 4	2.08 K4	2
J178	1007526.83	855211.14	426.00	7	31.30	34.50	3.20	32.6	41.1	4.7	7.2	14.4	11.39	33.24	0.90	0.39	52.1	177.0 5	1.29 NEG	1
J178	1007526.83	855211.14	426.00	8	34.50	37.10	2.60	40.9	37.1	4.5	7.3	10.2	11.99	33.13	0.96	0.42	62.9	177.0 5	1.38 NEG	1
J179	1007531.41	855200.59	426.13	1	21.40	23.50	2.10	1.3	9.2	10.0	36.1	43.4	12.84	34.98	1.56	0.78	48.9	175.0 4B	2.34 K4B	5

Tabulka 8: Počty vzorků podle kategorií v tabulce V_uzemi.

Kategorie	Počty vzorků
NEG	380
K4	259
K4J	73
K3	39
K4B	168
K3B	115
K2B	49
K51	0

Kategorie	Počty vzorků
K2A	1
K2	4
K1	10
	1098

т

Č

Α

R

Z listu *V_uzemi* jsou pak překopírovány sloupce potřebné pro vizualizaci v prostředí *Voxler* do listu *Samples* (tab. 9), ze kterého se pak načítají při dalším zpracování.

Tabulka 9: Část údajů tabulky Samples.

ID	From	То		41202	FF202	TION	FOUT	KAT CIELO	TVD	
11/11	10.40	22.00	PL_K02_KAU	22 62	1.67	0.52	2 10	KAT_CISLO	4	
1141	22.00	22.00	19.4	22 70	1.07	0.32	2.15	2	4	N4
1141	22.00	24.30	10.5	22.00	2.25	0.72	2.05	2	4	NEC
1141	24.30	27.00	10.0	32.05	2.23	0.95	3.10	1	5	NEG
1141	27.00	29.00	27.4	27.95	2.00	0.00	3.30	1	5	NEG
1141	29.00	30.30	30.2	20.70	2.42	1.00	3.27		3	KAD
1142	10.70	21.40	20.0	34.42	1.54	1.08	2.42	2	40	N4D
J142	21.40	24.00	24.1	31.85	1.59	0.92	2.51	2	4	K4
1142	24.00	20.50	20.5	21.14	1.00	0.75	2.51	2	4	N4
1142	20.00	29.00	19.7	31.13	1.80	0.39	2.45	2	4	K4
J142	29.00	30.50	14.5	29.85	2.19	0.48	2.07	1	4	NEG
J142	30.50	32.00	10.5	31.03	2.57	0.72	3.29	1	5	NEG
1142	32.00	32.80	27.0	33.01	1.00	0.13	1.13	1	4	NFC
J142	32.80	34.50	14.4	32.14	1.81	0.49	2.30	1	5	NEG
1140	22.20	24.00	33.8	32.74	0.00	0.32	0.98	2	4	K4
1140	24.00	20.00	37.1	25.39	0.70	0.28	0.98	2	4	K4
1140	20.00	28.00	33.0	32.43	0.78	0.39	1.17	2	4	K4
1146	28.00	29.50	30.3	33./1	0.77	0.46	1.23	2	4	K4
1146	29.50	31.40	30.9	34.20	0.83	0.39	1.22	4	48	K3
1146	31.40	32.50	31.9	35.62	0.82	0.42	1.24	4	48	K3
J146	32.50	34.00	30.1	32.79	1.00	0.43	1.43	2	48	K4
J146	34.00	36.00	27.7	35.29	0.97	0.31	1.28	4	48	K3
J146	36.00	37.90	20.9	34.91	0.96	0.42	1.38	4	48	K3
J146	37.90	39.00	28.3	32.83	1.56	0.64	2.20	2	4	K4
J146	39.00	41.00	14.4	33.85	1.04	0.36	1.40	1	5	NEG
J146	41.00	43.00	16.5	30.83	1.51	0.48	1.99	2	4	K4
J146	43.00	45.00	13.1	33.51	1.96	0.72	2.68	1	5	NEG
J146	45.00	46.50	12.0	33.34	1.94	0.61	2.55	1	5	NEG
J1/8	23.40	24.30	27.5	35.85	1.39	0.35	1.74	2	4	К4
J1/8	24.30	25.60	26.3	30.41	1.36	0.72	2.08	2	4	К4
J178	25.60	26.50	11.4	33.24	1.22	0.53	1.75	1	5	NEG
J178	26.50	28.50	10.3	31.28	1.22	0.63	1.85	1	5	NEG
J178	28.50	30.60	12.5	33.13	1.17	0.53	1.70	1	5	NEG
J178	30.60	31.30	21.9	32.59	1.37	0.71	2.08	2	4	K4
J178	31.30	34.50	14.4	33.24	0.90	0.39	1.29	1	5	NEG
J178	34.50	37.10	10.2	33.13	0.96	0.42	1.38	1	5	NEG
J179	21.40	23.50	43.4	34.98	1.56	0.78	2.34	5	4B	K4B

Údaje z tabulek Collars a Samples lze pro vizuální kontrolu vykreslit také v 3D v prostředí Voxler (obr. 2).

Obr. 2: Proporcionální zobrazení obsahu výplavu vzorků v prostředí Voxler.

2.2.3. Výpočet a vizualizace prostorové lokalizace vstupních dat

Opravené a doplněné vstupní údaje (geometrické parametry průzkumných děl a vzorky s obsahy technologických parametrů) se s pomocí speciálně vytvořeného makra *XYZ_data* (viz [2]) rozdělují po 10 cm úsecích (celkem 21209), prostorově se lokalizují ve středu každého úseku, ukládají se do listu *Analyzy* a zároveň se vytváří textový soubor pro vstup analýz do programu *Voxler*. Ukázka údajů tabulky *Analyzy* je v tabulce 10.

Tabulka *Analyzy* je zdrojem údajů pro další zpracování: pro výběr dat pro tvorbu horizontálních a vertikálních řezů, pro statistické analýzy, vizualizaci ve 2D a 3D aj. Jako příklad jsou na obr. 3 zobrazeny lokalizované údaje obsahu Al₂O₃ v prostředí *Voxler*.

TA ČR

Tabulka 10: Část údajů tabulky Analyzy.

Х	Y	Z	PL_ROZ_KAO	AL2O3	FE2O3	TIO2	Fe+Ti	ID	Hloubka	KAT_	VYP
-855192.19	-1007420.68	409.52	19.4	33.63	1.67	0.52	2.19	J141	19.45	K4	
-855192.19	-1007420.68	409.42	19.4	33.63	1.67	0.52	2.19	J141	19.55	K4	
-855192.19	-1007420.68	409.32	19.4	33.63	1.67	0.52	2.19	J141	19.65	K4	
-855192.19	-1007420.68	409.22	19.4	33.63	1.67	0.52	2.19	J141	19.75	K4	
-855192.19	-1007420.68	409.12	19.4	33.63	1.67	0.52	2.19	J141	19.85	K4	
-855192.19	-1007420.68	409.02	19.4	33.63	1.67	0.52	2.19	J141	19.95	K4	
-855192.19	-1007420.68	408.92	19.4	33.63	1.67	0.52	2.19	J141	20.05	K4	
-855192.19	-1007420.68	408.82	19.4	33.63	1.67	0.52	2.19	J141	20.15	K4	
-855192.19	-1007420.68	408.72	19.4	33.63	1.67	0.52	2.19	J141	20.25	K4	
-855192.19	-1007420.68	408.62	19.4	33.63	1.67	0.52	2.19	J141	20.35	K4	
-855192.19	-1007420.68	408.52	19.4	33.63	1.67	0.52	2.19	J141	20.45	K4	
-855192.19	-1007420.68	408.42	19.4	33.63	1.67	0.52	2.19	J141	20.55	K4	
-855192.19	-1007420.68	408.32	19.4	33.63	1.67	0.52	2.19	J141	20.65	K4	
-855192.19	-1007420.68	408.22	19.4	33.63	1.67	0.52	2.19	J141	20.75	K4	
-855192.19	-1007420.68	408.12	19.4	33.63	1.67	0.52	2.19	J141	20.85	K4	
-855192.19	-1007420.68	408.02	19.4	33.63	1.67	0.52	2.19	J141	20.95	K4	
-855192.19	-1007420.68	407.92	19.4	33.63	1.67	0.52	2.19	J141	21.05	K4	
-855192.19	-1007420.68	407.82	19.4	33.63	1.67	0.52	2.19	J141	21.15	K4	
-855192.19	-1007420.68	407.72	19.4	33.63	1.67	0.52	2.19	J141	21.25	K4	
-855192.19	-1007420.68	407.62	19.4	33.63	1.67	0.52	2.19	J141	21.35	K4	
-855192.19	-1007420.68	407.52	19.4	33.63	1.67	0.52	2.19	J141	21.45	K4	
-855192.19	-1007420.68	407.42	19.4	33.63	1.67	0.52	2.19	J141	21.55	K4	
-855192.19	-1007420.68	407.32	19.4	33.63	1.67	0.52	2.19	J141	21.65	K4	
-855192.19	-1007420.68	407.22	19.4	33.63	1.67	0.52	2.19	J141	21.75	K4	
-855192.19	-1007420.68	407.12	19.4	33.63	1.67	0.52	2.19	J141	21.85	K4	
-855192.19	-1007420.68	407.02	19.4	33.63	1.67	0.52	2.19	J141	21.95	K4	
-855192.19	-1007420.68	406.92	18.3	33.79	1.97	0.72	2.69	J141	22.05	К4	
-855192.19	-1007420.68	406.82	18.3	33.79	1.97	0.72	2.69	J141	22.15	К4	
-855192.19	-1007420.68	406.72	18.3	33.79	1.97	0.72	2.69	J141	22.25	K4	
-855192.19	-1007420.68	406.62	18.3	33.79	1.97	0.72	2.69	J141	22.35	K4	
-855192.19	-1007420.68	406.52	18.3	33.79	1.97	0.72	2.69	J141	22.45	К4	
-855192.19	-1007420.68	406.42	18.3	33.79	1.97	0.72	2.69	J141	22.55	К4	
-855192.19	-1007420.68	406.32	18.3	33.79	1.97	0.72	2.69	J141	22.65	К4	
-855192.19	-1007420.68	406.22	18.3	33.79	1.97	0.72	2.69	J141	22.75	K4	

Obr. 3: Lokalizované údaje obsahu Al_2O_3 v prostředí Voxler.

Makro *GSLIB_vystup* (viz [2]) provádí převod potřebných údajů do formátu *GSLIB* [1] z tabulky *Analyzy* pro zpracování v programu *SGeMS*. V tabulce 11 je ukázka části takto vzniklého souboru. Po jeho načtení do prostředí *SGeMS* lze tyto údaje vizualizovat (obr. 4), provádět základní statistické rozbory (viz část 2.4) a případně provádět i jiná geostatistická zpracování.

Tabulka 11: Ukázka části souboru ve formátu GSLIB pro vstup do prostředí SGeMS Jimlikov

9								
Х								
Y								
Z								
PL_ROZ_KAO								
AL203								
FE2O3								
TIO2								
FE TI								
Hloubka								
-855192.19	-1007420.68	409.52	19.4	33.63	1.67	0.52	2.19	19.45
-855192.19	-1007420.68	409.42	19.4	33.63	1.67	0.52	2.19	19.55
-855192.19	-1007420.68	409.32	19.4	33.63	1.67	0.52	2.19	19.65
-855192.19	-1007420.68	409.22	19.4	33.63	1.67	0.52	2.19	19.75
-855192.19	-1007420.68	409.12	19.4	33.63	1.67	0.52	2.19	19.85
-855192.19	-1007420.68	409.02	19.4	33.63	1.67	0.52	2.19	19.95
-855192.19	-1007420.68	408.92	19.4	33.63	1.67	0.52	2.19	20.05
-855192.19	-1007420.68	408.82	19.4	33.63	1.67	0.52	2.19	20.15
-855192.19	-1007420.68	408.72	19.4	33.63	1.67	0.52	2.19	20.25
-855192.19	-1007420.68	408.62	19.4	33.63	1.67	0.52	2.19	20.35
-855192.19	-1007420.68	408.52	19.4	33.63	1.67	0.52	2.19	20.45
-855192.19	-1007420.68	408.42	19.4	33.63	1.67	0.52	2.19	20.55
-855192.19	-1007420.68	408.32	19.4	33.63	1.67	0.52	2.19	20.65
-855192.19	-1007420.68	408.22	19.4	33.63	1.67	0.52	2.19	20.75
-855192.19	-1007420.68	408.12	19.4	33.63	1.67	0.52	2.19	20.85
-855192.19	-1007420.68	408.02	19.4	33.63	1.67	0.52	2.19	20.95
-855192.19	-1007420.68	407.92	19.4	33.63	1.67	0.52	2.19	21.05
-855192.19	-1007420.68	407.82	19.4	33.63	1.67	0.52	2.19	21.15
-855192.19	-1007420.68	407.72	19.4	33.63	1.67	0.52	2.19	21.25
-855192.19	-1007420.68	407.62	19.4	33.63	1.67	0.52	2.19	21.35
-855192.19	-1007420.68	407.52	19.4	33.63	1.67	0.52	2.19	21.45
-855192.19	-1007420.68	407.42	19.4	33.63	1.67	0.52	2.19	21.55
-855192.19	-1007420.68	407.32	19.4	33.63	1.67	0.52	2.19	21.65
-855192.19	-1007420.68	407.22	19.4	33.63	1.67	0.52	2.19	21.75
-855192.19	-1007420.68	407.12	19.4	33.63	1.67	0.52	2.19	21.85
-855192.19	-1007420.68	407.02	19.4	33.63	1.67	0.52	2.19	21.95
-855192.19	-1007420.68	406.92	18.3	33.79	1.97	0.72	2.69	22.05
-855192.19	-1007420.68	406.82	18.3	33.79	1.97	0.72	2.69	22.15
-855192.19	-1007420.68	406.72	18.3	33.79	1.97	0.72	2.69	22.25
-855192.19	-1007420.68	406.62	18.3	33.79	1.97	0.72	2.69	22.35
-855192.19	-1007420.68	406.52	18.3	33.79	1.97	0.72	2.69	22.45
-855192.19	-1007420.68	406.42	18.3	33.79	1.97	0.72	2.69	22.55

Obr. 4: Ukázka vizualizace dat převedených do prostředí SGeMS - údaje obsahu výplavu.

2.2.4. Základní statistické zpracování výplavu, Al2O3, Fe2O3, TiO2 a Al2O3+Fe2O3

Základní statistické zpracování je prováděno v prostředí *SGeMS* (viz část 2.3). Na obr. 5 jsou histogramy četností výplavu a Al_2O_3 spolu s jejich charakteristikami. Podobně na obr. 6 jsou histogramy četností Fe_2O_3 a TiO₂ spolu s jejich charakteristikami a na obr. 7 je histogram četností Fe_2O_3 +TiO₂ spolu s jeho charakteristikami.

Obr. 5: Ukázka statistického zpracování v prostředí SGeMS - histogramy četností parametrů výplav a Al_2O_3 (%) a *jejich základní statistické charakteristiky.*

Obr. 6: Ukázka statistického zpracování v prostředí SGeMS - histogramy četností parametrů Fe_2O_3 a Ti O_2 (%) a jejich základní statistické charakteristiky.

Obr. 7: Ukázka statistického zpracování v prostředí SGeMS - histogram četností parametru $Fe_2O_3+TiO_2$ (%) a jeho základní statistické charakteristiky.

V další části je prováděna regresní analýza závislosti jednotlivých technologických parametrů na hloubce. Nejtěsnější lineární závislost na hloubce vykazuje výplav s koeficientem korelace -0.568441 (obr. 8), slabou lineární závislost na hloubce vykazuje Al₂O₃ s koeficientem korelace -0.304721 (obr. 9). Ostatní parametry (Fe₂O₃, TiO₂ a Fe₂O₃+TiO₂) vykazují téměř nulovou lineární závislost na hloubce.

Program Centra kompetence

Obr. 8: Ukázka statistického zpracování v prostředí SGeMS – lineární závislost výplavu na hloubce a základní statistické charakteristiky.

Obr. 9: Ukázka statistického zpracování v prostředí SGeMS – lineární závislost Al_2O_3 na hloubce a základní statistické charakteristiky.

Lineární závislost (korelační koeficient 0.648485) vykazuje také výplav s Al₂O₃ (obr. 10) a Fe₂O₃ s Al₂O₃ s koeficientem korelace -0.525256 (obr. 11), slabší lineární závislost vykazuje výplav s Fe₂O₃ (korelační koeficient -0.327311, obr. 12).

Obr. 10: Ukázka statistického zpracování v prostředí SGeMS – lineární závislost výplavu na Al₂O₃ a základní statistické charakteristiky.

Obr. 11: Ukázka statistického zpracování v prostředí SGeMS – lineární závislost Fe_2O_3 na Al_2O_3 a základní statistické charakteristiky.

Obr. 12: Ukázka statistického zpracování v prostředí SGeMS – lineární závislost výplavu na Fe_2O_3 a základní statistické charakteristiky.

2.2.5. Modelování báze a stropu výskytu kaolinu a celkové litologie ložiska.

Tvorba modelu ložiska kaolinu Jimlíkov – východ vycházela z poznatků pracovního balíčku WP3, studia archivních zpráv (viz tabulka 2) a dat poskytnutých firmou Sedlecký kaolin a.s. Za stěžejní materiály, nutné pro vlastní modelování, lze označit tabulku *VRTY Jimlíkov* (viz 2.2.1) a tři závěrečné zprávy:

- Závěrečná zpráva geologického úkolu JIMLÍKOV-VÝCHOD přehodnocení ložiska keramického kaolinu a cihlářské suroviny Jimlíkov-sever v dobývacím prostoru Jimlíkov II (Tvrdý et al. 2014);
- Závěrečná zpráva Jimlíkov-sever II (Neumann et al. 1992);
- Závěrečná zpráva Jimlíkov-sever (Tvrdý et al. 1986).

Z těchto zpráv byly získány profily vrtů, které sloužily pro opravu vrtných dat uvedených v tabulce *VRTY Jimlíkov* (viz 2.2.1 a 2.2.2) a odkrytá geologická mapa s vrstevnicovým plánem v měřítku M 1 : 5 000.

Popis modelu

Ložisko kaolinu Jimlíkov – východ vzniklo kaolinizací žul karlovarského masivu v období křída až paleogén. Jde o pozůstatky původní zvětralinové kůry, které byly uchovány před denudací. Karlovarský masiv, jež je součástí rozsáhlého krušnohorského plutonu, tvoří krystalické podloží ložiska. V oblasti zájmového území je zastoupen mladšími krušnohorskými žulami. Tento horizont tvoří bázi ložiska. V závěrečných zprávách [9,10] je za krystalické podloží označována slabě kaolinizovaná až čerstvá žula s obsahem jílové frakce pod cca 8 %. Morfologie tohoto krystalického podloží je proměnlivá, zprohýbaná (obr. 13). V jihovýchodní části ložiska granit takřka vystupuje k povrchu. V severní části probíhá poruchová zóna cca jz.-sv. směru, která se projevuje tektonickým (příp. erozním) příkopem o šířce přibližně 100 m. Osa příkopu je zhruba ve směru vrtů JS125 - JSH135 – V228 – JS145. Severní okraj tvoří pravděpodobně dislokace s úklonem kolem 50° k jihovýchodu. Výška skoku se pohybuje v rozmezí 10 – 15 metrů. Jižní hranice je pravděpodobně ze západu tvořena také dislokací enchelon charakteru, která se v blízkosti vrtu JS 7 vytrácí. Její úklon se předpokládá k severozápadu pod úklonem 50°. Tektonická aktivita zájmových struktur trvala patrně celý terciér. Některé pohyby mohly přetrvat až do kvartéru [9]. Proto je většina ložiskových horizontů modelována jako tektonicky porušená výše zmíněnými zlomy.

Obr. 13: 3D model báze ložiska Jimlíkov – východ tvořený karlovarským masivem tzv. slabě kaolinizovanou až čerstvou žulou s obsahem jílové frakce pod cca 8 %.

V přímém nadloží krystalinika spočívá reziduální kaolin s výplavem v rozsahu od cca 8 až do 15 %, označovaný jako nedokonale kaolinizovaná žula, která tvoří spodní zónu kaolinizace (obr. 14). Morfologie je zvlněná podobně jako v případě báze ložiska. Také tato vrstva je porušena dislokacemi směru sv. – jz., které byly popsány výše.

Obr. 14: 3D model stropu nedokonale kaolinizované žuly - reziduální kaolin s výplavem v rozsahu od cca 8 až do 15 %.

TA ČR

Nad tímto technologicky stanoveným rozhraním je poloha reziduálního kaolínu s výplavem nad 15 %. Jedná se o tzv. dokonale kaolinizovanou žulu se zcela nebo částečně rozloženými živci a biotity – svrchní a střední zóna kaolinizace (obr. 15). Povrch je také zvlněn, nicméně méně výrazně než v předchozích případech. V severní části ložiska je poloha porušena výše popsaným tektonickým příkopem. Největší mocnost reziduálního kaolínu se nachází právě v této tektonické zóně.

Obr. 15: 3D model stropu dokonale kaolinizované žuly - reziduální kaolin s výplavem nad 15 %.

Obr. 16: 3D model stropu naplavenin starosedelského souvrství.

V přímém nadloží reziduálního kaolínu se nacházejí naplaveniny starosedelského souvrství (obr. 16) stáří eocén až oligocén. Bazální starosedelské souvrství vzniklo v podmínkách rychle se zahlubující pánve a má charakter splachů. Vyskytují se zde kaolinické písky a jíly (sekundární kaolin) až dobře vytříděné pískové sedimenty. Místy jsou zastoupeny polohy křemitých pískovců až křemenců vzniklých silicifikací během kaolinizace podloží. Morfologie je nepatrně zvlněná. Místy při jižním a východním okraji zájmového území poloha naplavenin chybí. Také tato poloha je porušena tektonickým příkopem.

Obr. 17: 3D model stropu sloje Josef se všemi podložními horizonty.

V období oligocén až miocén proběhla uhlotvorná sedimentační etapa, která začíná sedimentací sloje Josef, Sloj nasedá na starosedelské pískovce nebo přímo na kaolinické podloží (obr. 17). Největší mocnost je zachována v tektonickém příkopu. Další významnější polohy jsou zachovány v centrální části zájmového území přibližně ve směru sv. – jz.

V závěru ukládání josefských vrstev nastupuje vulkanická činnost a začíná sedimentace vulkanogenních chodovských vrstev s tufitickými jíly, tufy a tufity tzv. novosedelské souvrství (obr. 18). V zájmové oblasti jsou zachovány dvě významné pozice těchto tufitů. Jedna se nachází v centrální části. Druhá v tektonickém příkopu. Vzhledem k faktu, že vrt Jm 11 prochází 91 m touto polohou a na bázi tufitů se nedovrtal, lze se domnívat, že je lokalizovaný přímo v centru vulkánu, přibližně 700 m severně od zájmového polygonu.

Nad polohou tufitů se nachází kvartér (obr. 19), který vytváří vlastní ložisko cihlářských hlín. Ložisko je zastoupeno hlínami, jílovitými hlínami a jíly většinou hnědorudých barev. Kvartérní horniny zde dosahují místy mocnosti téměř 15 m. Ve svrchní části kvartérního souvrství převažují hlíny a jíly, místy s epiklastickou příměsí. V jejich podloží je vyvinuta přes 7 m mocná fosilní terasa řeky Rolavy, tvořená jílovito-písčitými štěrky. Průměrná mocnost suroviny se pohybuje mezi 5,1-6,8 m.

Obr. 18: 3D model stropu horizontu tvořeného tufitickými jíly, tufy a tufity tzv. novosedelské souvrství.

Obr. 19: 3D model stropu tzv. horizontu cihlářských hlín.

Popis postupu modelování

V první fázi modelování proběhla verifikace vrtných záznamů vůči archivním údajům. Bylo zjištěno, že do zájmového polygonu spadá přibližně polovina dodaných vrtů. Také vyšlo najevo, že tabulka neposkytuje informace o litologickém složení horninového prostředí ložiska, pouze informace o charakteru vzorku, jeho metráži a technologických parametrech. Vzorky jsou zatříděny podle kvality suroviny do technologických tříd, což pro vytvoření litologického modelu je nevhodné a nedostačující. Informace o nadloží nebo podloží odebraných vzorů nejsou uváděny vůbec. Z výše uvedeného vyplývá, že bylo nezbytné provést přehodnocení vrtných záznamů uvedených ve starých závěrečných zprávách.

Verifikovány byly vrty nacházejících se v zájmovém polygonu ložiska a v jeho těsné blízkosti. Celkem bylo vybráno 76 vrtů z celkového počtu 132. Bohužel se nepodařilo v archivních záznamech dohledat 7 vrtných záznamů. Z archivních vrtných záznamů byly přebírány informace o poloze vrtu, bázi kvartéru, bázi tufů a tufitů, bázi terciéru, bázi reziduálního kaolínu – produktivní zóna (výplav nad 15 % kaolinu), bázi reziduálního kaolínu – neproduktivní zóna (výplav pod 15 % kaolinu) tzv. rozhraní s horskou žulou a bázi vrtu.

První modelovanou plochou byl terén zájmového území (obr. 20). Data byla získána inteligentní digitalizací vrstevnicového plánu vykresleného v geologické mapě měřítka M 1 : 5 000. Vzhledem k hustotě a rovnoměrnosti rozmístění vstupních dat byla za interpolační metodu zvolena metoda lineárního krigingu. Velikost buňky gridu, společná pro všechny modelované plochy, byla zvolena 10x10 m.

Obr. 20: 3D model povrchu modelu – horizont terén se všemi ostatními horizonty.

Další modelovanou plochou byl strop cihlářských hlín (obr. 19). Tento horizont byl modelován stejně jako horizont báze kvartéru neboli stropu horizontu tvořeného tufitickými jíly, tufy a tufity tzv. novosedelské souvrství (obr. 18). Modelování báze kvartéru bylo provedeno výpočtem mocnosti vrstvy kvartéru a následně se tento grid odečetl od gridu terénu. Tím se docílilo jednak toho, že plocha báze kvartéru vertikálně nepřesahovala plochu terénu a zadruhé, báze kvartéru lépe vystihovala předpokládaný reálný průběh rozhraní.

Modelování báze tufů či tufitů (strop sloje Josef – obr. 17) bylo provedeno výpočtem přímo ze Z hodnot báze tufitů. Vzhledem k tomu, že ve směru SV-JZ probíhá přes modelované území tektonicky omezený příkop, byla za interpolační metodu vybrána metoda minimální křivosti, která dovoluje při výpočtu použít výškově nezadané lomové linie. V našem případě se jedná o dva přibližně paralelní zlomy, které byly nadigitalizovány z geologické mapy měřítka M 1 : 5 000. Varianta výpočtu mocnosti tufitů a jejich přičtení k vymodelované bázi kvartéru nebyla zvolena, protože by se zvyšovala míra nepřesnosti modelu. Vlastní báze kvartéru již nese jistou míru nejistoty, stejně jako modelovaná báze tufitů.

Podobným způsobem byly modelovány i ostatní geologická rozhraní (báze sloje Josef obr. 16, báze naplavenin obr. 15, báze reziduálního kaolínu – produktivní zóna obr. 14, báze reziduálního kaolínu – neproduktivní zóna obr. 13).

Na základě takto definovaných rozhraní byly vymezeny horizonty báze (obr. 13) a stropu (obr. 15) výskytu kaolinu ve formě gridů, které jsou pak určující pro 3D modelování ložiska v následujících částech metodiky.

2.2.6. Zobrazení vstupních dat ložiska kaolinu ve 3D v prostředí Voxler, vytvoření 3D gridů obsahů technologických parametrů a export 2D gridů v jednotlivých horizontech ve formátu Surfer (program Kaolin_A).

Aktualizovaná vstupní data (z částí 2.2 až 2.5) se dále zpracovávají programem Kaolin_A (viz [2]). Před jeho spuštěním se vytvoří pracovní adresář, kde se umístí spustitelný tvar programu (Kaolin_A.exe) a inicializační soubor (Kaolin_A_init.dat – [2]). Pro různé varianty modelování se může vytvořit více pracovních adresářů a také více inicializačních souborů.

Program doplňuje aktualizované vstupní údaje do tzv. mustrů obsahů výplavu (obr. 21), Al2O3 (obr. 22), Fe2O3 (obr. 23), TiO2 (obr. 24) a Fe2O3 + TiO2 (obr. 25) - souborů ve formátu *voxb* a tím také provede aktualizované zobrazení jednotlivých technologických parametrů ve 3D prostředí *Voxler*.

Obr. 21: Mustr obsahů výplavu s potřebnými objekty (vlevo) se zobrazením báze a stropu výskytu kaolinu (vpravo).

Program Centra kompetence

Obr. 22: Mustr obsahů Al₂O₃ s potřebnými objekty (vlevo) se zobrazením báze a stropu výskytu kaolinu (vpravo).

Obr. 23: Mustr obsahů Fe_2O_3 s potřebnými objekty (vlevo) se zobrazením báze a stropu výskytu kaolinu (vpravo).

Obr. 24: Mustr obsahů TiO₂ s potřebnými objekty (vlevo) se zobrazením báze a stropu výskytu kaolinu (vpravo).

Obr. 25: Mustr obsahů $Fe_2O_3 + TiO_2$ s potřebnými objekty (vlevo) se zobrazením báze a stropu výskytu kaolinu (vpravo).

V pracovním adresáři se *Kaolin_A.exe* spustí a do něj se také na začátku zpracování programem zkopírují a přejmenují tyto mustry ve formátu voxb (postupně názvy souborů *Vyplav_a.voxb*, *Al2O3_a.voxb*, *Fe2O3_a.voxb*, *TiO2_a.voxb* a *FeTi_a.voxb* – dále aktualizované soubory *voxb*).

Na obr. 26 je úvodní okno programu po spuštění. Na obr. 27 je okno programu pro zadání vstupních parametrů. Přitom je požadována kontrola vstupních parametrů adresářů a souborů zadaných

TA ČR

v inicializačním souboru (obr. 28) a také vstupních parametrů pro 3D interpolaci - anizotropie, geometrie gridu a výběru vzorků zadaných v inicializačním souboru (obr. 29).

Obr. 26: Úvodní okno programu Kaolin_A po spuštění.

💢 3D modely Výplavu, AL2O3, Fe2O3, TiO2 a Fe2O3+TiO2	-		×
- Vyberte inicializační vstupní soubor (Kaolin_init*.dat):			
Cal Kaolin			
Sv Voxler_mustr			
Vybraný inicializační soubor:			
D:\CK\Programy\Kaolin\Voxler_mustr\Kaolin_A_init.dat			
- Vstupní parametru			
Vstupní soubor:			
D:\CK\Programy\Kaolin\Voxler_mustr\Vyber_8_2016.xls			
Grid stropu kaolinu:			
D:\CK\Kaolín\Vyber_8_2016\Honza\Strop_kaolin.grd			
Grid báze kaolinu:			
D:\CK\Kaolín\Vyber_8_2016\Honza\Baze_kaolin.grd			
🔽 Export 2D gridů			
🔽 3D Výplavu 🔽 3D Al2O3 🔽 3D Fe2O3 🔽 3D TiO2	2 🔽 3	3D Fe2O3	+TiO2
<u>D</u> K >>výpočet	Ca	nceļ	

Obr. 27: Okno programu Kaolin A pro zadání vstupních parametrů.

<u>Poznámka</u>: Pokud bude prováděno následné zpracování programem *Kaolin_Viz* (kategorizace a výpočet zásob, vizualizace ve 2D a 3D... - viz části 2.8 až 2.10) je nutno zatrhnout "Export 2D gridů" a všechna "3D ...".

Obr. 28: Kontrola vstupních parametrů adresářů a souborů.

Parametry pro 3D gridování	×
Anisotropy X length: 200, Y length: 200, Z length: 2	
Search X length: 200, Y length: 200, Z length: 2	
Geometry X min: -855200, X max: -854200 Geometry Y min: -1008180, Y max: -1007190 Geometry Z min: 377, Z max: 451	
Geometry X spacing: 10, Y spacing: 10, Z spacing: 1	
Pokud chcete upravit parametry, ukončete program a upravte inic soubor!	ializační
	ОК

Obr. 29: Kontrola vstupních parametrů pro 3D interpolaci - anizotropie, geometrie gridu a výběru vzorků.

Program dále doplní do aktualizovaných souborů *voxb* vstupy: list *Collars* vstupního souboru *xls* (zadaného v inicializačním souboru), list *Samples* vstupního souboru *xls*, list *Analyzy* vstupního souboru, grid stropu kaolinu typu Uniform lattice zadaného v inicializačním souboru, grid báze kaolinu typu Uniform lattice zadaného v inicializačním souboru. Program také v aktualizovaných souborech *voxb* doplní potřebné vazby mezi objekty.

U souborů *Vyplav_a.voxb*, *Al2O3_a.voxb*, *Fe2O3_a.voxb*, *TiO2_a.voxb* proběhne 3D gridování (objekt *Gridder*) podle parametrů anizotropie (obr. 30), parametrů geometrie gridu (obr. 31) a parametrů výběru vzorků pro interpolaci (obr. 32) zadaných v inicializačním souboru. Tyto parametry lze měnit a vytvářet tak varianty modelů ložiska.

Protože ve sledovaných technologických parametrech vzhledem ke způsobu vzniku suroviny nelze hledat obecné zákonitosti prostorové distribuce, byla pro interpolaci (i s ohledem na vlastnosti procesu kaolinizace a hustotu vzorkování) zvolena interpolační metoda inverzních vzdáleností s výraznou délkou os X a Y (v příkladu 200 m) a minimální Z (v příkladu 2 m) elipsoidu anizotropie a výběru vzorků.

Program Centra kompetence

Pro	operty I	Manager					×
	Auto U	pdate	Upo	late N	Vov		?
G	eneral	Geometry	Sea	rch			
	Gridde	er (id:9)					
	Input			Vybe	er_8_2	016.xls - Analyzy	
	Input p	points		2120	9		
	Data d	ependent pa	ara	Rec	alcula	te	
	Action			Beg	jin Gri	dding	
	Metho	bd					
	Metho	d		Inve	rse dis	tance	\sim
	Anisot	гору		Anis	otropi	c	\sim
	🗆 Ellij	ose		Axis	lengt	ns for the axes-aligned anisotropy ellips	e.
	X le	ength		200			
	Y le	ngth		200			
	Zle	ngth		2			
	Power			2			
	Smoot	h		0			

Obr. 30: Zadané parametry anizotropie pro 3D gridování (objekt Gridder) převzaté z inicializačního souboru.

Property Manager	×
Auto Update	Update Now ?
General Geometry	Search
Geometry	
X Limits	(-855200, -854200)
X min	-855200
X max	-854200
Y Limits	(-1008180, -1007190)
Y min	-1008180
Y max	-1007190
Z Limits	(377, 451)
Z min	377
Z max	451
Resolution	(101 x 100 x 75)
Nx	101
Ny	100
Nz	75
Spacing	(10, 10, 1)
X spacing	10
Y spacing	10
Z spacing	1
Spacing The spacing between	nodes in the output lattice.

Obr. 31: Zadané parametry geometrie gridu pro 3D gridování (objekt Gridder) převzaté z inicializačního souboru.

Property Manager				×
🗹 Auto Update	Up	date l	Now	?
General Geome	try Se	arch		
Search				
Search type		Anis	otropic	\sim
😑 Search Ellip	se	Axis	lengths for the search ellipse.	
X length		200		
Y length		200		
Z length		2		
Min count		1		-
Max count		20		+

Obr. 32: Zadané parametry výběru vzorků pro 3D gridování (objekt Gridder) převzaté z inicializačního souboru.

U souboru *FeTi_a.voxb* gridování neprobíhá, neboť 3D grid vznikne součtem 3D gridů *Fe2O3_a.voxb* a *TiO2_a.voxb*, které se uchovávají ve formátu *vdat* [2]. Proto musí být při zpracování *FeTi_a.voxb* programem načteny jako vstupy soubory *Gridder_Fe2O3.vdat* a *Gridder_TiO2.vdat* a doplněny vazby mezi objekty.

Program *Kaolin_A* dále s pomocí objektu *Math* omezí 3D gridy bází a stropem výskytu kaolinu. Objekt Math také provede (pokud je zatrženo tlačítko "Export 2D gridů" – viz obr. 27) export 2D gridů ve formátu *grd* (*Surfer*) jednotlivých horizontálních vrstev všech technologických parametrů do adresáře určeného v inicializačním souboru pro další zpracování programem *Kaolin_Viz*.

<u>Upozornění</u>: Automaticky nelze importovat do *Voxleru* gridy stropu (*Strop_kaolin.grd*) a báze kaolinu (*Baze_kaolin.grd*) typu curvilinear lattice. Proto je nutné při změně stropu nebo báze kaolinu objekty *Strop_kaolin.grd* 2 a/nebo *Baze_kaolin.grd* 2 ručně načíst (*General – File path*).

U souborů *Vyplav_a.voxb*, *Al2O3_a.voxb*, *Fe2O3_a.voxb*, *TiO2_a.voxb* a *FeTi_a.voxb* se předpokládá jejich uložení uživatelem při zavírání.

Na obr. 33 až 37 je několik ukázek 3D vizualizace sledovaných technologických parametrů – výstupů programu *Kaolin_A* v prostředí *Voxler*.

Obr. 33: 3D vizualizace výplavu – obálka tělesa s minimálním obsahem 36 % a báze výskytu kaolinu.

Obr. 34: 3D vizualizace Al_2O_3 – zobrazení 3D gridu pomocí ScatterPlot.

Obr. 35: 3D vizualizace Fe_2O_3 – *zobrazení 3D gridu pomocí FaceRender.*

Obr. 36: 3D vizualizace TiO_2 – *zobrazení 3D gridu pomocí VolRender.*

Obr. 37: 3D vizualizace $Fe_2O_3 + TiO_2$ - zobrazení 3D gridu pomocí žezů XY, YZ, XZ (ObliqueImage).

2.2.7. Kategorizace bloků zásob na základě gridů technologických parametrů exportovaných programem Kaolin_A a zadaných parametrů kategorií zásob ve 2D, jejich převedení do 3D gridu a odhad zásob (program Kaolin_Viz)

Program *Kaolin_A* vytvořil jako výstupy mj. 2D gridy ve formátu *grd* (*Surfer*) jednotlivých horizontálních vrstev všech technologických parametrů (viz 2.6 a také [2]), které jsou následně zpracovány programem *Kaolin_Viz* (popis programu je v [2]).

Před jeho spuštěním se vytvoří pracovní adresář, kde se umístí spustitelný tvar programu (*Kaolin_Viz.exe*) a inicializační soubor (v textu *Kaolin_Viz_init.dat* – [2]). Pro různé varianty modelování se může vytvořit více pracovních adresářů a také více inicializačních souborů.

Na obr. 38 je úvodní okno programu po spuštění. Na obr. 39 je okno programu pro zadání vstupních parametrů.

Obr. 38: Úvodní okno programu Kaolin_Viz po spuštění.

🗶 Výpočet podle zadaných vstupních parametrů —	
-Vyberte inicializační vstupní soubor (Kaolin_Viz_init*.dat):	
🖃 d: [DATA]	
Strogramy	
🔁 Kaolin	
🔄 Kaolin_Viz	
Prac_exe	
Vybraný inicializační soubor:	
D:\CK\Programy\Kaolin\Kaolin_Viz\Prac_exe\Kaolin_Viz_init.dat	
Vstupní parametry	
Kaolin_A byly 08.01.2017 11:25:17 vytvořeny gridy od 377 po 451 m n.m. s kr	okem 1 m
Horizontální řezy - parametry vizualizace	
Zmin (m n.m.): 377 Zmax (m n.m.): 451	
Vertikální řezy - parametry vizualizace	
Spodní XZ (JTSK): 1008100 Vzdálenost mezi řezy XZ (m): 100 Poč	et 9
	- 9
Levy 12 (J15K): 000100 V20alenost mezi rezy 12 (m): 100 Poc	ec 3
Vykreslovat vrty do vzdálenosti od řezu (m): 50	
	Vstup <u>O</u> K
	<u>C</u> ancel

Obr. 39: Okno programu Kaolin Viz pro zadání vstupních parametrů.

Přitom je požadována kontrola vstupních parametrů adresářů a souborů zadaných v inicializačním souboru (obr. 40) a také vstupních parametrů pro kategorizaci bloků zásob, odhad zásob a vizualizaci zadaných v inicializačním souboru (viz 2.8, 2.9 a 2.10), obr. 41.

Obr. 40: Kontrola vstupních parametrů adresářů a souborů.

Parametry pro kategorizaci, odhad zásob a vizualizaci	×
K1 : >Výplav: 15, >Al2O3: 36, <fe2o3: 0.3,="" 0.9,="" 1.1<br="" <fe2o3+tio2:="" <tio2:="">K2 : >Výplav: 15, >Al2O3: 36, <fe2o3: 0.4,="" 1.1,="" 1.2<br="" <fe2o3+tio2:="" <tio2:="">K2A: >Výplav: 15, >Al2O3: 36, <tio2: 0.3,="" 1.2<br="" <fe2o3+tio2:="">K51: >Výplav: 15, >Al2O3: 36, <tio2: 0.3,="" 1<br="" <fe2o3+tio2:="">K2B: >Výplav: 15, >Al2O3: 36, >TiO2: 0.4, <fe2o3+tio2: 1<br="">K2B: >Výplav: 15, >Al2O3: 36, >TiO2: 0.5, <fe2o3+tio2: 1<br="">K4B: >Výplav: 15, >Al2O3: 34, >TiO2: 0.5, <fe2o3+tio2: 2<br="">K4B: >Výplav: 15, >Al2O3: 34, <tio2: 0.5,="" 2.5<br="" <fe2o3+tio2:="">K4: >Výplav: 15, >Al2O3: 34, <tio2: 0.5,="" 1.6<br="" <fe2o3+tio2:="">K4I: >Výplav: 15, >Al2O3: 34, <tio2: 0.5,="" 1.6<br="" <fe2o3+tio2:="">K4I: >Výplav: 15, >Al2O3: 34, <tio2: 0.5<br="">K4: >Výplav: 15, <fe2o3+tio2: 3<br="">Objemová hmotnost kaolinu: 2050 kg/m3 Map units per cm Y pro vertikální fezy: 50 Map units per cm Y pro vertikální fezy: 5</fe2o3+tio2:></tio2:></tio2:></tio2:></tio2:></fe2o3+tio2:></fe2o3+tio2:></fe2o3+tio2:></tio2:></tio2:></fe2o3:></fe2o3:>	
Pokud chcete upravit parametry, ukončete program a upravte inicializační soubor!	
ОК	

Obr. 41: Kontrola vstupních parametrů pro kategorizaci bloků zásob, odhad zásob a vizualizaci.

Po zadání vstupních parametrů (obr. 39) a stisknutí tlačítka $Vstup \ OK$ se zobrazí tlačítka pro spuštění jednotlivých modulů programu (obr. 42):

Vyberte inicializační vstupní soubor (Kaolin_Víz_init.dat): Image: Character Stress of the	¥ Výpočet podle zadanýc	h vstupních parametrů	_		<
Image: Second	Vyberte inicializační vstupní so	ubor (Kaolin_Viz_init*.dat):			_
Image: Stress of the stress	🗐 d: [DATA]		at		
CK Programy Kaolin Kaolin_Viz Pras_exe Vybraný inicializační soubor: D:VCKVProgramy/Kaolin/Kaolin_Viz/Prac_exe/Kaolin_Viz_init.dat Vstupní parametly Kaolin_A byly 08.01.2017 11:25:17 vytvořeny gidy od 377 po 451 m n.m. s krokem 1 m Horizontální řezy - parametly vizualizace Zmin (m n.m.): 377 Zmax (m n.m.): 451 Vetkální řezy - parametly vizualizace Spodní XZ (JTSK): 1008100 Vzdálenost mezi řezy XZ (m): 100 Levý YZ (JTSK): 855100 Vzdálenost mezi řezy YZ (m): 100 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vykreslení zadaných vetlikálních řezů XZ a YZ Vykreslení kategorii blok ve 30 Zmárů 2D, převod do 3D Vykreslení zadaných vetlikálních řezů XZ a YZ Vykreslení zadaných vetlikálních řezů XZ a YZ					
Programy Kaolin, Viz Prosc. exe Vybraný inicializační soubor: D: VCK/Programy/Kaolin/Kaolin_Víz/Prac_exe/Kaolin_Víz_init.dat Vstupní parametly Kaolin, A byly 08.01.2017 11:25:17 vytvořeny gridy od 377 po 451 m n.m. s krokem 1 m Horizontální řezy - parametly vizualizace Zmin (m n.m.): 377 Zmax (m n.m.): 451 Vettikální řezy - parametry vizualizace Sponí XZ (JTSK): 1008100 Vzdálenost mezi řezy XZ (m): 100 Počet: 9 Levý YZ (JTSK): 855100 Vzdálenost mezi řezy YZ (m): 100 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vykreslení zadaných vetikálních řezů XZ a YZ Vykreslení kategori blok Vykreslení zadaných vetikálních řezů XZ a YZ Vykreslení zadaných vetikálních řezů XZ a YZ	баск				
Kadim_Viz Kadim_Viz Prac_exe Vytraný inicializační soubor: D: \CK\Programy\Kaolin\Kaolin_Viz\Prac_exe\Kaolin_Viz_init.dat Vstupní parametry Kaolin_A byly 08.01.2017 11:25:17 vytvořeny gridy od 377 po 451 m n.m. s krokem 1 m Horizontální řezy - parametry vizualizace Zmin (m n.m.): 377 Zmax (m n.m.): 451 Vertikální řezy - parametry vizualizace Spodní X2 (JTSK): 1008100 Vzdálenost mezi řezy XZ (m): 100 Počet: 9 Levý YZ (JTSK): 855100 Vzdálenost mezi řezy YZ (m): 100 Vertikální čezo- parametry vizualizace 9 Vytkreslovat vrty do vzdálenosti od řezu (m): 50 Vstup QK Vstup QK Kategorizace bloků - výpočet Vykreslení porizontálních řezů zadaných vrstev Vykreslení kategorii blok ve 30 gridů 2D, převod do 3D Vykreslení zadaných vertikálních řezů XZ a YZ valov	Programy				
Pracewe Vybraný inicializační soubor: D:\CK\Programy\Kaolin\Kaolin_Viz\Prac_exe\Kaolin_Viz_init.dat Vstupní parametry Kaolin_A byly 08.01.2017 11:25:17 vytvořeny gridy od 377 po 451 m n.m. s krokem 1 m Horizontální řezy - parametry vizualizace Zmin (m n.m.): 377 Zmax (m n.m.): 451 Vetrikální řezy - parametry vizualizace Spodní XZ (JTSK): 1008100 Vzdálenost mezi řezy XZ (m): 100 Levý YZ (JTSK): 855100 Vzdálenost mezi řezy YZ (m): 100 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vstup QK Vykreslení bolků - výpočet Vykreslení zadaných vertikálních řezů XZ a YZ Vykreslení zadaných vertikálních řezů XZ a YZ	G Kaolin Viz				
Vybraný inicializační soubor: D: VCKVProgramy/Kaolin/Kaolin_Viz/Prac_exe/Kaolin_Viz_init.dat Vstupní parametny Kaolin_A byly 08.01.2017 11:25:17 vytvořeny gidy od 377 po 451 m n.m. s krokem 1 m Horizontální řezy - parametny vizualizace Zmin (m n.m.) 377 Zmax (m n.m.) 451 Vetrikální řezy - parametny vizualizace Spodní XZ (JTSK): 1008100 Vzdálenost mezi řezy XZ (m): 100 Levý YZ (JTSK): 855100 Vzdálenost mezi řezy YZ (m): 100 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vstup QK Vykreslení horizontálních řezů zadaných vrstev Vykreslení kategorii blok ve 30 gridů 2D, převod do 3D Vykreslení zadaných vertikálních řezů XZ a YZ Vykreslení zadaných vertikálních řezů XZ a YZ	Prac_exe				
D: VCK/Programy/Kaolin/Kaolin_Viz/Prac_exe/Kaolin_Viz_init.dat Vetupní parametty Kaolin_A byly 08.01.2017 11:25:17 vytvořeny gridy od 377 po 451 m n.m. s krokem 1 m Horizontální řezy - parametty vizualizace Zmin (m n.m.): 377 Zmax (m n.m.): 451 Vettikální řezy - parametty vizualizace Spodní >> (JTSK): 1008100 Vzdálenost mezi řezy >Z (m): 100 Levý YZ (JTSK): 855100 Vzdálenost mezi řezy YZ (m): 100 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vykreslení zadaných vertikálních řezů zadaných vrstev Vykreslení kalegorii blok ve 30 Vykreslení zadaných vertikálních řezů XZ a YZ Cancel	Vybraný inicializační soub	oor:			
Vstupní parametry Kaolin, A byly 08.01.2017 11:25:17 vytvořeny gridy od 377 po 451 m n.m. s krokem 1 m Horizontální řezy - parametry vizualizace Zmin (m n.m.): 377 Zmax (m n.m.): 451 Vertikální řezy - parametry vizualizace Spodní XZ (J1SK): 1008100 Vzdálenost mezi řezy XZ (m): 100 Počet: 9 Levý YZ (J1SK): 855100 Vzdálenost mezi řezy YZ (m): 100 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vykreslovát vrty do vzdálenosti od řezu (m): 50 Vykreslení zadaných vertikálních řezů zadaných vrstev Vykreslení kategori blok ve 3D Vykreslení zadaných vertikálních řezů XZ a YZ va 3D	D:\CK\Programy\Kaolin\K	(aolin_Viz\Prac_exe\Kaolin_Viz_i	nit.dat		
Kaolin, A byly 08.01.2017 11:25:17 vytvořeny gridy od 377 po 451 m n.m. s krokem 1 m Horizontální řezy - parametry vizualizace Zmin (m n.m.): 377 Zmax (m n.m.): 451 Vetříkální řezy - parametry vizualizace Spodní XZ (JTSK): 1008100 Vzdálenost mezí řezy XZ (m): 100 Levý YZ (JTSK): 855100 Vzdálenost mezí řezy YZ (m): 100 Počet: 9 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vykreslovát vrty do vzdálenosti od řezu (m): 50 Vykreslení zadaných vertikálních řezů zadaných vrstev Vykreslení kategoriž blok vertikálních řezů XZ a YZ Vykreslení zadaných vertikálních řezů XZ a YZ Cancel	Vstupní parametry				
Horizontalni řežy - parametry vizualizace Zmin (m.n.m.): 377 Vetikální řezy - parametry vizualizace Spodní XZ (JTSK): 1008100 Vzdálenost mezi řezy XZ (m): 100 Počet: 9 Levý YZ (JTSK): 855100 Vzdálenost mezi řezy YZ (m): 100 Počet: 9 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vstup QK Vstup QK Kategorizace bloků - výpočet Vykreslení horizontálních řezů zadaných vrstev vykreslení zadaných vetikálních řezů XZ a YZ Vykreslení zadaných vetikálních řezů XZ a YZ	Kaolin_A byly 08.01.2017 11:2	25:17 vytvořeny gridy od 377 po 451 m r	1.m. s kroke	em 1 m	
Zmax (m n.m.): 451 Vetikální řezy - parametry vizualizace Spodní XZ (JTSK): 1008100 Vzdálenost mezi řezy XZ (m): 100 Počet: 9 Levý YZ (JTSK): 855100 Vzdálenost mezi řezy YZ (m): 100 Počet: 9 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vstup QK Vstup QK Kategorizace bloků - výpočet gridů 2D, převod do 3D Vykreslení horizontálních řezů zadaných vrstev Vykreslení kategori blok Vykreslení zadaných vetikálních řezů XZ a YZ va 3D Cancel	Horizontalni rezy - parametry	vizualizace			
Vertikální řezů - parametry vízualizace Spodní XZ (JTSK): 1008100 Vzdálenost mezi řezy YZ (m): 100 Počet: 9 Levý YZ (JTSK): 855100 Vzdálenost mezi řezy YZ (m): 100 Počet: 9 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vstup QK Kategorizace bloků - výpočet Vykreslení horizontálních řezů zadaných vrstev Vykreslení kategorii blok gridů 2D, převod do 3D Vykreslení zadaných vertikálních řezů XZ a YZ Vykreslení zadaných vertikálních řezů XZ a YZ	2min (m n.m.):] 377	∠max (m n.m.): 491			
Spodri XZ (JTSK): 1008100 Vzdálenost mezi řezy XZ (m); 100 Počet: 9 Levý YZ (JTSK): 855100 Vzdálenost mezi řezy YZ (m); 100 Počet: 9 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vstup QK Vstup QK Kategorizace bloků - výpočet Vykreslení <u>h</u> orizontálních řezů zadaných vrstev Vykreslení <u>kategorii blok</u> ve 30 Vykreslení zadaných vertikálních řezů XZ a YZ Cancel	Vertikální řezy - parametry viz				
Levý YZ (JTSK): 855100 Vzdálenost mezi řezy YZ (m): 100 Počet: 9 Vykreslovat vrty do vzdálenosti od řezu (m): 50 Vstup DK Kategorizace bloků - výpočet gridů 2D, převod do 3D Vykreslení horizontálních řezů zadaných vrstev Vykreslení zadaných vertikálních řezů XZ a YZ Vykreslení	Spodni X2 (JTSK): 10081	UU Vzdálenost mezi řezy XZ (m): 10	J Počet	<u> </u>	
Vykreslovat vrty do vzdálenosti od řezu (m): 50 Kategorizace bloků - výpočet gridů 2D, převod do 3D Vykreslení horizontálních řezů zadaných vrstev Vykreslení zadaných vertikálních řezů XZ a YZ Vykreslení kategorií blok ve 3D	Levý YZ (JTSK): 8551	00 Vzdálenost mezi řezy YZ (m): 10) Počet	9	
Kategorizace bloků - výpočet gridů 2D, převod do 3D Vykreslení <u>h</u> orizontálních řezů zadaných vrstev Vykreslení zadaných vertikálních řezů XZ a YZ Vykreslení kategorií <u>b</u> lok ve 3D	Vykreslovat vrty do vzdáleno	osti od řezu (m): 50			
Kategorizace bloků · výpočet gridů 2D, převod do 3D Vykreslení <u>h</u> orizontálních řezů zadaných vrstev Vykreslení zadaných vertikálních řezů XZ a YZ Vykreslení kategorii blok ve 3D				Vstup <u>O</u> K	
grīdů 2D, převod do 3D Vykreslení zadaných vertikálních řezů XZ a YZ ve 3D Cancel	Kategorizace bloků - výpočet	Vykreslení horizontálních řezů zadan	ých vrstev	Vykreslen	Í
<u>C</u> ancel	gridů 2D, převod do 3D	Vykreslení zadaných <u>v</u> ertikálních řezi	ùXZ a YZ	ve 3D	жи
				<u>C</u> ancel	

Obr. 42: Okno programu Kaolin_Viz po potvrzení vstupních parametrů.

Programu Kaolin_Viz obsahuje čtyři moduly:

- 1. Kategorizace bloků zásob na základě gridů výplavu, Al₂O₃, Fe₂O₃, TiO₂ a Fe₂O₃+TiO₂ exportovaných programem *Kaolin_A* a zadaných parametrů kategorií zásob ve 2D a jejich převedení do 3D gridu (tlačítko "*Kategorizace bloků výpočet gridů 2D, převod do 3D*") část 2.2.7.
- 2. Vizualizace horizontálních řezů ve 2D v prostředí *Surfer* (tlačítko "*Vykreslení horizontálních řezů zadaných vrstev*") část 2.2.8.
- 3. Vizualizace sítě vertikálních řezů ve 2D v prostředí *Surfer* (tlačítko "*Vykreslení zadaných <u>v</u>ertikálních řezů XZ a YZ*") část 2.2.9.
- 4. Vizualizace kategorií bloků zásob ve 3D v prostředí *Voxler* (tlačítko "*Vykreslení kategorií bloků ve 3D*") část 2.2.10.

Nejprve se musí provést spuštění 1. modulu (tlačítko "*Kategorizace bloků - výpočet gridů 2D, převod do 3D*"), aby vznikly gridy používané dalšími moduly. Pokud se tato volba jednou provede a nenastala aktualizace vstupních dat (a vytvoření nových gridů technologických parametrů programem *Kaolin_A*), lze přímo spouštět (po případné úpravě vstupních parametrů na obr. 42) i další tlačítka.

Po spuštění 1. modulu (tlačítkem "Kategorizace bloků - výpočet gridů 2D, převod do 3D") se provádí:

- Postupná tvorba *grd* souborů kategorií zásob jednotlivých vrstev (v příkladě z obr. 42 od 377 do 451 m n.m. s krokem 1 m) na základě gridů výplavu, Al₂O₃, Fe₂O₃, TiO₂ a Fe₂O₃+TiO₂ exportovaných programem *Kaolin_A* a podle parametrů kategorizace zadaných v inicializačním souboru (*Kaolin_Viz_init.dat*) a také vytvoření textového souboru *Kateg_3D.dat* (vstup pro 4. modul "*Vykreslení kategorií bloků ve 3D*" v prostředí *Voxler –* viz 2.10).
- Úprava původních gridů výplavu, Al₂O₃, Fe₂O₃, TiO₂ a Fe₂O₃+TiO₂ exportovaných programem *Kaolin_A* pro prostředí *Surferu* (nastavení hodnoty *Blank nestanoveno* místo hodnoty -0.1, kterou nastavil program *Kaolin_A* v bodech gridu, které se nenacházejí mezi bází a stropem výskytu kaolinu).
- Postupná tvorba textových souborů *Grid_XXX.dat* (*XXX* je pořadí vrstvy) s údaji o jednotlivých blocích zásob (*X Y Cislo_bloku Kategorie Cislo_kategorie Vyplav AL2O3 Fe2O3 TiO2 Fe2O3+TiO2*), které pak slouží pro zobrazení těchto informací při vizualizaci horizontálních řezů v prostředí *Surfer* (viz 2.8).
- Kromě toho se vytváří výstupní sestava zásob (textový soubor *Zasoby.txt*). Ukázka části tohoto souboru je v tab. 12.

Činnost modulu 1 programu Kaolin_Viz je podrobně popsána v [2].

R

Č

Tabulka 12: Ukázka části souboru Zasoby.txt

Vrstva 410) m n.m., pořa	adí vrstvy: 3	4				
Kategorie	Pocet bloků	Objem (m3)	Tonáž (kt)	Prum Vyplav	Prum Al2O3	Prum Fe2O3	Prum TiO2
К1	1	100	0.205	20.965	36.25	0.85	_0.21
К2	64	6400	13.12	40.105	36.31	0.93	0.18
K2A	3	300	0.615	26.149	35.91	0.9	0.28
K51	0	-	-	-	-	-	-
K2B	196	19600	40.18	40.036	36.64	0.97	0.49
КЗВ	249	24900	51.045	36.953	37.2	1.18	0.61
K4B	887	88700	181.835	31.376	35.55	1.43	0.7
KЗ	246	24600	50.43	36.194	35.39	0.99	0.38
K4J	143	14300	29.315	39.806	36.64	2.04	0.67
K4	1200	120000	246	23.094	34.03	1.72	0.55
NEG	1985	198500	406.925	15.441	32.6	2.64	0.63
Celkem	4974	497400	1019.67	24.23	34.17	1.94	0.6
Vrstva 420) m n.m., pořa	adí vrstvy: 4	4				
Kategorie	Pocet bloků	Objem (m3)	Tonáž (kt)	Prum_Vyplav	Prum_Al2O3	Prum_Fe2O3	Prum_TiO2
К1	16	1600	3.28	28.425	36.63	0.69	0.27
K2	16	1600	3.28	30.187	36.88	0.77	0.34
K2A	71	7100	14.555	25.895	35.22	0.86	0.24
K51	0		-	-	-	_	-
K2B	419	41900	85.895	39.27	36.95	0.91	0.56
K3B	906	90600	185.73	38.488	36.88	1.08	0.72
K4B	1308	130800	268.14	33.965	35.68	1.41	0.7
K3	180	18000	36.9	37.637	35.21	1.04	0.34
K4J	228	22800	46.74	38.028	35.4	1.95	0.63
K4	788	78800	161.54	30.643	34.72	1.77	0.57
NEG	730	73000	149.65	23.705	33.99	3.16	0.7
Celkem	4662	466200	955.71	33.34	35.57	1.63	0.64
 Celkem od	377 do 451 m	n.m.					
Kategorie	Pocet bloků	Objem (m3)	Tonáž (kt)	Prum_Vyplav	Prum_Al2O3	Prum_Fe2O3	Prum_TiO2
К1	925	92500	189.625	33.73	36.74	0.75	0.16
K2	687	68700	140.835	34.72	36.53	0.89	0.24
K2A	662	66200	135.71	31.14	35.17	0.89	0.22
K51	1	100	0.205	13.06	36.03	0.66	0.2
K2B	5423	542300	1111.715	39.55	36.85	0.93	0.54
K3B	16792	1679200	3442.36	38.44	37.08	1.11	0.71
K4B	32667	3266700	6696.735	32.09	35.73	1.41	0.72
KЗ	7339	733900	1504.495	34.63	35.66	1.07	0.33
K4J	10453	1045300	2142.865	40.17	36.23	2.13	0.66
K4	39087	3908700	8012.835	23.06	33.99	1.78	0.6
NEG	49513	4951300	10150.165	16.4	32.53	2.73	0.68
Celkem	163549	16354900	33527.545	26.73	34.56	1.87	0.64

2.2.8. Vizualizace horizontálních řezů ve 2D v prostředí Surfer (program Kaolin_Viz)

Jak bylo uvedeno v části 2.2.7, 2. modul programu *Kaolin_Viz* realizuje vizualizaci horizontálních řezů ve 2D v prostředí *Surfer*. Před jeho spuštěním je možné zadat v rámu *"Horizontální řezy - parametry vizualizace"* (obr. 42) hodnoty Zmin (m n.m.) a Zmax (m n.m.) vrstev, které se mají zpracovat a poté tyto hodnoty potvrdit stlačením tlačítka *"Vstup <u>O</u>K"*.

<u>Upozornění</u>: Po případné aktualizaci vstupních dat se musí provést nejprve spuštění 1. modulu programu *Kaolin_Viz* (tlačítko "*Kategorizace bloků - výpočet gridů 2D, převod do 3D*"), aby vznikly aktualizované gridy kategorií bloků používané dalšími moduly. Pokud se tato volba jednou provede a nenastala aktualizace vstupních dat (a vytvoření nových gridů technologických parametrů programem *Kaolin_A*), lze přímo spouštět (po případné úpravě vstupních parametrů – viz obr. 42) i další tlačítka pro moduly 2, 3 a 4.

Po spuštění 2. modulu tlačítkem "*Vykreslení <u>h</u>orizontálních řezů zadaných vrstev*" (viz obr. 42) se provádí postupná tvorba a zobrazení *srf* souborů horizontálních řezů ve 2D v prostředí *Surfer* (postupně generuje soubory *XXX_ZZZm_2D.srf* pro jednotlivé vrstvy *XXX* s nadmořskou výškou *ZZZ*) pro jednotlivé vrstvy zadané v rámu "*Horizontální řezy - parametry vizualizace*" v měřítku zadaném v inicializačním souboru.

Činnost modulu 2 programu Kaolin_Viz je podrobně popsána v příloze 7 (část 2).

Na obr. 43 je vizualizace jednoho z 85 takto vygenerovaných horizontálních řezů (při zadání dle obr. 42) v prostředí *Surferu*. Zapínáním, případně vypínáním objektů v levém okně lze zobrazit:

- Kategorie bloků zásob kaolinu řezu (objekt Kategorie)
- Obsahy Výplavu bloků řezu (objekt *Vyplav*)
- Obsahy Al₂O₃ bloků řezu (objekt *Al2O3*)
- Obsahy Fe₂O₃ bloků řezu (objekt *Fe2O3*)
- Obsahy TiO₂ bloků řezu (objekt *TiO2*)
- Obsahy Fe₂O₃+TiO₂ bloků řezu (objekt *Fe*2O3+*TiO*2)
- Color Scale Kategorií bloků zásob kaolinu řezu (objekt Color Scale Kategorie)
- Color Scale Výplavu bloků řezu (objekt *Color Scale Vyplav*)
- Color Scale obsahu Al₂O₃ bloků řezu (objekt *Color Scale Al2O3*)
- Color Scale obsahu Fe₂O₃ bloků řezu (objekt *Color Scale Fe2O3*)
- Color Scale obsahu TiO₂ bloků řezu (objekt *Color Scale TiO2*)
- Color Scale obsahu Fe₂O₃+TiO₂ bloků řezu (objekt *Color Scale Fe₂O₃+TiO₂*)
- Pozice a názvy vrtů v řezu (objekt *Vrty*)
- Hodnoty údajů o jednotlivých blocích zásob (*Cislo_bloku Kategorie Cislo_kategorie Vyplav AL2O3 Fe2O3 TiO2 Fe2O3+TiO2*) v řezu zobrazených z textových souborů *Grid_XXX.dat (XXX je pořadí vrstvy) viz 2.7 (objekt Bloky)*
- Obvod ložiska damarkaci (objekt Obvod ložiska)
- Jednotlivé osy souřadného systému (Objekty Right Axis, Left Axis, Top Axis, Bottom Axis)

Po nastavení měřítka objektu *Map*, případně po dalších formálních doplněních, lze takový řez přímo tisknout na vhodné výstupní zařízení.

Surfer - [44_420m_2D.srf]

Press F1 for help

Obr. 43: Vizualizace horizontálního řezu 420 m.n.m. (soubor 44_420m_2D.srf) v prostředí Surferu.

2.2.9. Vizualizace sítě vertikálních řezů ve 2D v prostředí Surfer (program Kaolin Viz)

Jak bylo uvedeno v části 2.2.7, 3. modul programu Kaolin Viz realizuje vizualizaci sítě vertikálních řezů ve 2D v prostředí Surfer. Před jeho spuštěním je možné zadat v rámu "Vertikální řezy - parametry vizualizace" (obr. 42) hodnoty geometrie sítě vertikálních řezů, které se mají zpracovat a poté tyto hodnoty potvrdit stlačením tlačítka "Vstup OK".

Upozornění: Po případné aktualizaci vstupních dat se musí provést nejprve spuštění 1. modulu programu Kaolin_Viz (tlačítko "Kategorizace bloků - výpočet gridů 2D, převod do 3D"), aby vznikly aktualizované gridy kategorií bloků používané dalšími moduly. Pokud se tato volba jednou provede a nenastala aktualizace vstupních dat (a vytvoření nových gridů technologických parametrů programem Kaolin_A), lze přímo spouštět (po případné úpravě vstupních parametrů – viz obr. 42) i další tlačítka pro moduly 2, 3 a 4.

Po spuštění 3. modulu tlačítkem "Vykreslení zadaných vertikálních řezů XZ a YZ" (viz obr. 42) se v první fázi vytvoří data a gridy čísel kategorií a sledovaných technologických parametrů v zadaných vertikálních řezech a ve druhé fázi se tato data a gridy vykreslí v prostředí Surfer (podrobněji v [2]).

Ve druhé fázi se provádí postupná tvorba a zobrazení *srf* souborů vertikálních řezů ve 2D v prostředí *Surfer* (nejprve se postupně generují soubory *VertXZ_YYY_2D.srf* - *YYY* je souřadnice Y řezu v kartézské souřadné soustavě a následně se postupně generují soubory *VertYZ_XXX_2D.srf* - *XXX* je souřadnice X řezu v kartézské souřadné soustavě) podle zadání v rámu "*Horizontální řezy* - *parametry vizualizace*" (obr. 42) v měřítku zadaném v inicializačním souboru.

Činnost modulu 3 programu Kaolin_Viz je podrobně popsána v [2].

Na obr. 44 je vizualizace jednoho z 9 takto vygenerovaných vertikálních řezů XZ (při zadání dle obr. 42) v prostředí *Surferu*. Na obr. 45 je vizualizace jednoho z 9 takto vygenerovaných vertikálních řezů YZ (při zadání dle obr. 42) v prostředí *Surferu*. Zapínáním, případně vypínáním objektů v levém okně lze zobrazit:

- Kategorie bloků zásob kaolinu řezu (objekt Kategorie)
- Obsahy Výplavu bloků řezu (objekt Vyplav)
- Obsahy Al₂O₃ bloků řezu (objekt *Al2O3*)
- Obsahy Fe_2O_3 bloků řezu (objekt *Fe2O3*)
- Obsahy TiO₂ bloků řezu (objekt *TiO2*)
- Obsahy Fe_2O_3 +Ti O_2 bloků řezu (objekt *Fe2O3*+*TiO2*)
- Color Scale Kategorií bloků zásob kaolinu řezu (objekt *Color Scale Kategorie*)
- Color Scale Výplavu bloků řezu (objekt *Color Scale Vyplav*)
- Color Scale Al₂O₃ bloků řezu (objekt *Color Scale Al2O3*)
- Color Scale Fe₂O₃ bloků řezu (objekt *Color Scale Fe₂O3*)
- Color Scale TiO₂ bloků řezu (objekt *Color Scale TiO*2)
- Color Scale Fe₂O₃+TiO₂ bloků řezu (objekt *Color Scale Fe₂O₃+TiO₂*)
- Pozice, názvy a vzdálenost od řezu vrtů vybraných do řezu (u XZ je kladná pro vrty nad řezem a záporná pro vrty pod řezem, u YZ je kladná pro vrty vpravo od řezu a záporná pro vrty vlevo od řezu) (objekt *Vrty vzdálenost*)
- Hodnoty údajů o jednotlivých blocích zásob (*Cislo_bloku Kategorie Cislo_kategorie Vyplav AL2O3 Fe2O3 TiO2 Fe2O3+TiO2*) v řezu zobrazených z textových souborů vytvořených v 1. fázi (objekt *Bloky*)
- Hodnoty údajů o jednotlivých vzorcích ve vrtu (*Cislo_bloku Kategorie Cislo_kategorie Vyplav AL2O3 Fe2O3 TiO2 Fe2O3+TiO2*) v řezu zobrazených z textových souborů vytvořených v 1. fázi (objekt *Vrty_Samples*)
- Průběhy vrtů vybraných do řezu (objekt *Průběhy vrtů*)
- Úseky vrtů se vzorky kategorie K1 vrtů vybraných do řezu (objekt *Base_K1*)
- Úseky vrtů se vzorky kategorie K2 vrtů vybraných do řezu (objekt *Base_K2*)
- Úseky vrtů se vzorky kategorie K2A vrtů vybraných do řezu (objekt *Base_K2A*)
- Úseky vrtů se vzorky kategorie K51 vrtů vybraných do řezu (objekt *Base_K51*)
- Úseky vrtů se vzorky kategorie K2B vrtů vybraných do řezu (objekt *Base_K2B*)
- Úseky vrtů se vzorky kategorie K3B vrtů vybraných do řezu (objekt *Base_K3B*)
- Úseky vrtů se vzorky kategorie K4B vrtů vybraných do řezu (objekt *Base_K4B*)
- Úseky vrtů se vzorky kategorie K3 vrtů vybraných do řezu (objekt *Base_K3*)
- Úseky vrtů se vzorky kategorie K4J vrtů vybraných do řezu (objekt *Base_K4J*)
- Úseky vrtů se vzorky kategorie K4 vrtů vybraných do řezu (objekt *Base_K4*)
- Úseky vrtů se vzorky kategorie NEG vrtů vybraných do řezu (objekt *Base_NEG*)
- Průběh báze výskytu kaolinu v řezu (objekt *Báze kaolinu*)
- Průběh stropu výskytu kaolinu v řezu (objekt Strop kaolinu)
- Jednotlivé osy souřadného systému (Objekty Right Axis, Left Axis, Top Axis, Bottom Axis)

T A Č R

Obr. 44: Vizualizace vertikálního řezu XZ 1007800 (JTSK) (soubor VertXZ_1007800_2D.srf) v prostředí Surferu.

Obr. 45: Vizualizace vertikálního řezu YZ 854900 (JTSK) (soubor VertYZ_854900_2D.srf) v prostředí Surferu.

Po nastavení měřítka objektu *Map*, případně po dalších formálních doplněních, lze takový řez přímo tisknout na vhodné výstupní zařízení.

2.2.10. Vizualizace kategorií bloků zásob ve 3D v prostředí Voxler (program Kaolin_Viz)

Jak bylo uvedeno v části 2.2.7, 4. modul programu *Kaolin_Viz* realizuje vizualizaci kategorií bloků zásob ve 3D v prostředí *Voxler*.

<u>Upozornění</u>: Po případné aktualizaci vstupních dat se musí provést nejprve spuštění 1. modulu programu *Kaolin_Viz* (tlačítko *"Kategorizace bloků - výpočet gridů 2D, převod do 3D*"), aby vznikly aktualizované gridy kategorií bloků používané dalšími moduly. Pokud se tato volba jednou provede a nenastala aktualizace vstupních dat (a vytvoření nových gridů technologických parametrů programem *Kaolin_A*), lze přímo spouštět (po případné úpravě vstupních parametrů – viz obr. 42) i další tlačítka pro moduly 2, 3 a 4.

4. modul programu *Kaolin_Viz* doplňuje aktualizované vstupní údaje do tzv. mustru čísel kategorií bloků zásob (obr. 46) - souboru ve formátu *voxb* a tím také provede aktualizované zobrazení kategorií zásob bloků ve 3D prostředí *Voxleru*.

Obr. 46: Mustr čísel kategorií zásob bloků s potřebnými objekty (vlevo) se zobrazením báze a stropu výskytu kaolinu (vpravo).

Nejprve se v pracovním adresáři zkopíruje soubor *Mustr_Kategorie.voxb* do *Kategorie_a.voxb*, spustí se *Voxler* a dále se doplní v *Kategorie_a.voxb* vstupy: list *Collars* vstupního souboru *xls* (zadaného v inicializačním souboru), list *Samples* vstupního souboru *xls* a soubor *Kateg_3D.dat* vytvořeným modulem 1 (viz 2.7). Program také v aktualizovaných souborech *voxb* doplní potřebné vazby mezi objekty.

Dále proběhne 3D gridování čísla kategorií bloků (objekt *Gridder*) podle parametrů geometrie gridu technologických parametrů (viz 2.6) primitivní metodou přesně v bodech středů bloků ze souboru *Kateg_3D.dat*. Parametry gridování jsou na obr. 47.

Č R

* *

Property Manager	×	Property Manager	×	Property Manager	
Auto Update U	pdate Now ?	Auto Update	Update Now ?	Auto Update	Jpdate No
General Geometry S	earch	General Geometry	y Search	General Geometry	earch
Gridder (id:8)		🗆 Geometry		Search	
Input	Kateg 3D.dat		(-855200, -854200)	Search type	Simple
Input points	163549	Y Limits	(-1008180, -1007190)	Radius	0.5
Data dama dant sam	Developte	E Z Limits	(377, 451)	Min count	1
Data dependent para	Recalculate	Resolution	(101 x 100 x 75)	Max count	1
Action	Begin Gridding	Spacing	(10, 10, 1)		1
Method					
Method	Data metric 🛛 🗸				
Metric	Mean 🗸				
Cridder (id:0)					
Gridder (ia:8)					
				L	_

Obr. 47: Parametry gridování čísel kategorií bloků.

Upozornění: Automaticky nelze importovat do Voxleru gridy stropu (Strop_kaolin.grd) a báze kaolinu (Baze_kaolin.grd) typu curvilinear lattice. Proto je nutné při změně stropu nebo báze kaolinu objekty Strop_kaolin.grd a/nebo Baze_kaolin.grd ručně načíst (General – File path).

U souboru Kategorie_a.voxb se předpokládá jeho uložení uživatelem při zavírání.

Na obr. 48 až 52 je několik ukázek 3D vizualizace kategorií bloků zásob vygenerovaných modulem 4 programu Kaolin_Viz v prostředí Voxler.

Obr. 48: 3D vizualizace kategorií bloků zásob – zobrazení kategorií zásob ve vzorcíxh vrtů a báze výskytu kaolinu.

Obr. 49: 3D vizualizace kategorií bloků zásob (ScatterPlot).

Obr. 50: 3D vizualizace kategorií bloků zásob – zobrazení obálky těles kategorií K1 a K2 (Isosurface), řezu ložiskem (OrthoImage) a báze výskytu kaolinu.

Program Centra kompetence

Obr. 51: 3D vizualizace kategorií bloků zásob (VolRender).

Obr. 52: 3D vizualizace kategorií bloků zásob (FaceRender).

Činnost modulu 4 programu Kaolin_Viz je podrobně popsána v [2].

2.2.11. Případné doplnění vstupních údajů na základě prováděného těžebního průzkumu a přechod ke kroku 2.2.6

V případě doplnění vstupních dat je nutno provést následující kroky:

- Zapsat nové údaje do tabulky *Nová_data*, která má stejnou strukturu jako tabulka *V_uzemi* (viz část 2.2.2).
- V tabulce *Nová_data* spustit makro *Kontrola_navaznosti* (viz část 2.2.2 a [2]). Po opravě případných chyb přejít k další odrážce.
- V tabulce *Nová_data* spustit makro *Vrty* (viz část 2.2.2 a viz [2]). Takto vzniklé údaje překopírovat na konec listu *Collars* (tab. 2).
- V tabulce *Nová_data* doplnit sloupec Fe+Ti (součet FE2O3 a TIO2) a spustit makro *Kategorie* (viz část 2.2.2 a [2]), které v tabulce doplní sloupec KAT_VYP (třída kategorie vypočtená) a KAT_CISLO (číslo kategorie).
- Překopírovat patřičné sloupce tabulky *Nová_data* na konec tabulky *Samples*.
- Spustit makro XYZ_data (viz část 2.2.3 a [2]), které rozděluje analýzy po 10 cm úsecích, prostorově je lokalizuje ve středu každého úseku, ukládá je do listu *Analyzy* (přepíše původní údaje) a zároveň vytváří textový soubor pro vstup analýz do programu *Voxler*.
- V případě, že proběhla těžba, je nutno upravit grid stropu výskytu kaolinu podle části 2.2.5.
- Přechod k části 2.2.6 metodiky.

3. Závěr

Předkládaná metodika modelování ložiska kaolinu Jimlíkov východ je unikátní v tom, že specifikuje jednotlivé kroky metodického postupu od pořízení potřebných vstupních údajů z archivní dokumentace, přes uplatnění moderních algoritmů tvorby variantních 3D modelů ložiska, až po odhady zásob a vizualizaci kategorií zásob. Pomocí speciálně vytvořeného programového vybavení je zajištěna kontrola vstupních dat, kompatibilita použitých programů (*MS Excel, Surfer, Voxler, SGeMS*) a je také realizováno automatické generování výstupů – různých typů vizualizace ložiska ve 2D a ve 3D.

Tato metodika spolu s nově vyvinutým programovým vybavením umožňuje vytvářet variantní modely ložiska tohoto a obdobných typů, umožňuje také rychlé aktualizace těchto modelů při doplnění nebo změně vstupních dat (případně i parametrů modelování - například použití více variant parametrů interpolace). Uplatnění popsaných metodických postupů vede k vytvoření aktivního, dynamického komplexního modelu ložiska kaolinu, do něhož lze operativně doplňovat informace na základě prováděného těžebního průzkumu včetně variantních odhadů zásob podle zadaných podmínek využitelnosti.

4. Srovnání "novosti postupů"

Nová metodika tvorby a vizualizace 3D modelu ložisek geneticky obdobných s vzorovým modelovým ložiska Jimlíkov - východ přináší nový komplexní přístup k vyhodnocení potenciálních zásob u ložisek tohoto a obdobných genetických typů. Průzkumné práce jsou i několik desetiletí staré, jsou, z dnešního pohledu, nedostatečného rozsahu a navíc ne vždy informace geochemického průzkumu splňují požadavky kladené a na aktuálně používané analytické metody.

Současně navržená, a výše popsaná metodika, řeší ekonomický aspect nasazených softwarových postupů. Ve srovnání s dnes již běžně ve světě užívanými komplexními softwarovými řešeními, jejichž investiční náklady se pohybují v řádech vyšších 100 tisíců, včasto až prvních milionů korun, dosahují náklady na nákup komerčního, zde navrženého a použitého softwaru, prvních desítek tisíc korun. Tyto náklady jsou

tedy adekvátní malému rozsahu potenciálních ložisek kritických surovin, které jsou předmětem řešení v rámci projektu CEEMIR TAČR.

5. Popis uplatnění Certifikované metodiky

Potenciální uplatnění navržené metodiky vyplývá v zásadě z toho, co bylo řečeno v 1. odstavci předchozí 4. kapitoly. Je tedy určena pro ty eventuální ekonomické subjekty, které potřebují, i přes absenci optimálního a současným analytickým metodám odpovídajícího průzkumu, vyhodnotit potenciál již opuštěných, dříve např. i pro jinou komoditu těžených ložiskových objektů. Na základě takto připraveného 3D modelu ložiska, včetně distribuce zrudnění, rozhodnout o dalším postupu a to s minimalizovanými investiceni do softwarového vybavení.

6. Ekonomické aspekty

Jak již bylo uvedeno výše, celkové náklady na zavedení předloženého metodického postupu nepřesáhnou 100 tisíc korun. Pro realizaci je nezbytné zakoupit software od firmy Golden software *Surfer* a *Voxler*. Aktuální ceny těchto dvou software jsou 850 \$ za *Surfer* verze 15 a 480 \$ za *Voxler* verze 4.

Ekonomický přínos nelze přesně vyčíslit, protože je závislý na množství a aktuální ceně zpracovávané komodity. Srovnání lze provest pouze vůči jiným dnes komerčně používaným postupům výpočtu zásob. Mnoho společností využívá software, které požadují výkonný hardware a mnoho vstupních údajů. Ceny těchto softwarů přesahují první miliony korun. Mnohem vyšší náklady v desítek až sotvkách miliónů korun jsou u těchto komerčních postupů vynakládány na pořízení nových dat. Bez dostatečného množství některých dat nejsou tyto softwary schopny výpočet zásob provést.

Další ekonomický přínos předkládané metodiky spočívá v možnosti provést výpočet zásob i bez možnosti pořízení nových dat. V některých případech získaní nových dat není z různých důvodů možné.

Literatura

- [1] Deutsch, C., V., Journel, A., G.: GSLIB Geostatistical Software Library and User's Guide. Second Edition. New York, Oxford University Press, Oxford, 1998, 369 s.
- [2] Grygar, R., Staněk, F., Jelínek, J., Jarošová, M.: ZPRÁVA O SPLNĚNÍ MILNÍKU WP4/3, část 1. *MS, CEEMIR VŠB-TU Ostrava, 2017, 117 s.*
- [3] REMY, N., BOUCHER, A., WU, J.: Applied geostatistics with SGeMS: a user's guide. New York: Cambridge University Press, 2009, xix, 264 p.
- [4] Tvrdý J., Bartošová J., Burdová A. (2014): Závěrečná zpráva geologického úkolu Jimlíkov-východ (přehodnocení ložiska keramického kaolinu a cihlářské suroviny Jimlíkov-sever v dobývacím prostoru Jimlíkov II) – č. ú. GET 13/157
- [5] Závěrečná zpráva Božičany (JADRNÍČEK et al., 1960). Archiv Geofondu.
- [6] Závěrečná zpráva Jimlíkov, (KŘELINA et al., 1969). Archiv Geofondu.
- [7] Závěrečná zpráva Božičansko sever, (SKOPOVÝ et al., 1976). Archiv Geofondu.
- [8] Závěrečná zpráva Jimlíkov II, (HRZINA et al., 1985). Archiv Geofondu.
- [9] Závěrečná zpráva Jimlíkov-sever, (TVRDÝ et al., 1986). Archiv Geofondu.
- [10] Závěrečná zpráva Jimlíkov-sever II, (NEUMANN et al., 1992). Archiv Geofondu.

T A Č R

Seznam obrázků

Obr. 1: Průzkumná díla vstupující do výpočtu v prostředí Surfer	6
Obr. 2: Proporcionální zobrazení obsahu výplavu vzorků v prostředí Voxler	10
Obr. 3: Lokalizované údaje obsahu Al ₂ O ₃ v prostředí Voxler.	11
Obr. 4: Ukázka vizualizace dat převedených do prostředí SGeMS - údaje obsahu výplavu	13
Obr. 5: Ukázka statistického zpracování v prostředí SGeMS - histogramy četností parametrů výplav	v a
Al ₂ O ₃ (%) a jejich základní statistické charakteristiky.	13
Obr. 6: Ukázka statistického zpracování v prostředí SGeMS - histogramy četností parametrů Fe ₂ O ₃	а
TiO_2 (%) a jejich základní statistické charakteristiky	14
Obr. 7: Ukázka statistického zpracování v prostředí SGeMS - histogram četností parametru Fe ₂ O ₃ +	TiO ₂
(%) a jeho základní statistické charakteristiky.	14
Obr. 8: Ukázka statistického zpracování v prostředí SGeMS – lineární závislost výplavu na hloubc	e a
základní statistické charakteristiky	15
Obr. 9: Ilkázka statistického zpracování v prostředí SGeMS – lineární závislost Al ₂ O ₂ na hloubce a	····· 10
základní statistické charakteristiky	15
Obr. 10: Ukázka statistického zpracování v prostředí SGeMS – lineární závislost výmlavu na Al-O-	
zókladní statistické charakteristiky	a 16
Obr. 11. Ultózka statistického zprocování v prostředí SGoMS – lincórní závislost Ec.O. no. ALO. o	10
TI. Ukazka statistického zpracováli v prostředi SOEWIS – iniednii zavislost Fe2O3 na Al2O3 a	16
Zakładni statisticke charakteristiky.	10
Obr. 12: Ukazka statistickeno zpracovani v prostredi SGelviS – linearni zavisiost vypiavu na Fe_2O_3	a 17
Zakladni statisticke charakteristiky.	1/
Obr. 13: 3D model baze loziska Jimlikov – vychod tvoreny karlovarskym masivem tzv. slabe	10
kaolinizovanou az cerstvou zulou s obsanem jilove frakce pod cca 8 %	
Obr. 14: 3D model stropu nedokonale kaolinizovane zuly - rezidualni kaolin s vyplavem v rozsahu	od cca
8 až do 15 %.	18
Obr. 15: 3D model stropu dokonale kaolinizované žuly - reziduální kaolin s výplavem nad 15 %	19
Obr. 16: 3D model stropu naplavenin starosedelského souvrství.	20
Obr. 17: 3D model stropu sloje Josef se všemi podložními horizonty.	20
Obr. 18: 3D model stropu horizontu tvořeného tufitickými jíly, tufy a tufity tzv. novosedelské souv	rství.
	21
Obr. 19: 3D model stropu tzv. horizontu cihlářských hlín	22
Obr. 20: 3D model povrchu modelu – horizont terén se všemi ostatními horizonty	23
Obr. 21: Mustr obsahů výplavu s potřebnými objekty (vlevo) se zobrazením báze a stropu výskytu	
kaolinu (vpravo)	24
Obr. 22: Mustr obsahů Al ₂ O ₃ s potřebnými objekty (vlevo) se zobrazením báze a stropu výskytu ka	olinu
(vpravo)	25
Obr. 23: Mustr obsahů Fe ₂ O ₃ s potřebnými objekty (vlevo) se zobrazením báze a stropu výskytu ka	olinu
(vpravo)	25
Obr. 24: Mustr obsahů TiO2 s potřebnými objekty (vlevo) se zobrazením báze a stropu výskytu kac	olinu
(vpravo).	26
Obr. 25: Mustr obsahů Fe ₂ O ₃ + TiO ₂ s potřebnými objekty (vlevo) se zobrazením báze a stropu výs	skytu
kaolinu (vpravo).	
Obr. 26: Úvodní okno programu Kaolin A po spuštění.	27
Obr. 27: Okno programu Kaolin A pro zadání vstupních parametrů.	27
Obr. 28: Kontrola vstupních parametrů adresářů a souborů	28
Obr. 29: Kontrola vstupních parametrů pro 3D interpolaci - anizotropie, geometrie gridu a výběru v	/zorků
Obr. 30: Zadané parametry anizotropie pro 3D gridování (obiekt Gridder) převzaté z inicializačního	0
souboru.	

Obr. 32: Zadané parametry výběru vzorků pro 3D gridování (objekt Gridder) převzaté z inicializační souboru.	no 30 31 31 32 32
Solution $22, 2D$ with $1 = 2$ of $1 = 2$ of $1 = 2$ of $1 = 2$ of $1 = 2$	31 31 32 32
Opr. (55) SD vizualizace vyplavu – opalka lelesa s minimalnim opsanem 50 % a paze vyskylu kaolinu	31 32 32
Obr. 34: 3D vizualizace Al ₂ Ω_2 – zobrazení 3D gridu nomocí ScatterPlot	31 32 32
Obr. 35: 3D vizualizace Fe_2O_2 – zobrazení 3D gridu pomocí FaceRender	32
Obr. 36: 3D vizualizace TiO_2 – zobrazení 3D gridu pomocí VolRender	52
Obr. 37: 3D vizualizace $Fe_2O_2 + TiO_2$ - zobrazení 3D gridu pomocí žezů XY XZ (ObliqueImage) 33
Obr. 38: Úvodní okno programu Kaolin. Viz po spuštění	34
Obr. 39. Okno programu Kaolin. Viz pro zadání vstupních parametrů	34
Obr. 40: Kontrola vstupních parametrů adresářů a souborů	35
Obr. 41. Kontrola vstupních parametrů pro kategorizaci bloků zásob, odbad zásob a vizualizaci	35
Obr. 42: Okno programu Kaolin. Viz po potyrzení vstupních parametrů	35
Obr. 43: Vizualizace horizontálního řezu 420 m n m (soubor 44 420m 2D srf) v prostředí Surferu	39
Obr. 44: Vizualizace vertikálního řezu XZ 1007800 (JTSK) (soubor VertXZ 1007800 2D srf) v pros	tředí
Surferu	41
Obr. 45: Vizualizace vertikálního řezu YZ 854900 (JTSK) (soubor VertYZ 854900 2D srf) v prostře	edí
Surferu	41
Obr. 46: Mustr čísel kategorií zásob bloků s potřebnými objekty (vlevo) se zobrazením báze a stropu	
výskytu kaolinu (vpravo)	42
Obr. 47: Parametry gridování čísel kategorií bloků	43
Obr. 48: 3D vizualizace kategorií bloků zásob – zobrazení kategorií zásob ve vzorcíxh vrtů a háze	10
výskytu kaolinu	43
Obr. 49: 3D vizualizace kategorií bloků zásob (ScatterPlot)	44
Obr. 50: 3D vizualizace kategorií bloků zásob – zobrazení obálky těles kategorií K1 a K2 (Isosurface).
řezu ložiskem (OrthoImage) a báze výskytu kaolinu.	44
Obr. 51: 3D vizualizace kategorií bloků zásob (VolRender).	
Obr. 52: 3D vizualizace kategorií bloků zásob (FaceRender).	45

T A Č R

Seznam tabulek

Tabulka 1: Část údajů tabulky VRTY Jimlíkov	5
Tabulka 2: Přehled archivních vrtů v prostoru ložiska Jimlíkov-sever	5
Tabulka 3: Část údajů tabulky Collars	7
Tabulka 4: Vlastnosti keramických kaolinů na Karlovarsku (Tvrdý J. et al., 2014)	7
Tabulka 5: Jakostní třídy keramických kaolinů (Tvrdý J. et al., 2014)	7
Tabulka 6: Vztah mezi číslem kategorie a kategorií kaolinů.	
Tabulka 7: Část údajů tabulky V_uzemi.	
Tabulka 8: Počty vzorků podle kategorií v tabulce V_uzemi	
Tabulka 9: Část údajů tabulky Samples.	9
Tabulka 10: Část údajů tabulky Analyzy.	
Tabulka 11: Ukázka části souboru ve formátu GSLIB pro vstup do prostředí SGeMS	
Tabulka 12: Ukázka části souboru Zasoby.txt	

Obsah

1.	0	bsah a	a závazná struktura certifikované metodiky	. 1
	1.1.	Cíl m	netodiky	1
2.	Pe	opis vl	astní metodiky	. 1
,	2.1.	Obec	ná část – popis ložiska	1
	2.2.	Meto výcho	dické postupy a algoritmy tvorby a vizualizace 3D modelu ložiska kaolinu Jimlíkov - od	4
	2.2	2.1.	Revize všech dostupných archivních materiálů	. 5
	2.2	2.2.	Verifikace a korekce vstupních dat	. 6
	2.2	2.3.	Výpočet a vizualizace prostorové lokalizace vstupních dat	10
	2.2	2.4.	Základní statistické zpracování výplavu, Al2O3, Fe2O3, TiO2 a Al2O3+Fe2O3	13
	2.2	2.5.	Modelování báze a stropu výskytu kaolinu a celkové litologie ložiska	17
	2.2	2.6.	Zobrazení vstupních dat ložiska kaolinu ve 3D v prostředí Voxler, vytvoření 3D gridů obsahů technologických parametrů a export 2D gridů v jednotlivých horizontech ve formátu Surfer (program Kaolin_A)	24
	2.2	2.7.	Kategorizace bloků zásob na základě gridů technologických parametrů exportovaných programem Kaolin_A a zadaných parametrů kategorií zásob ve 2D, jejich převedení do 3 gridu a odhad zásob (program Kaolin_Viz)	3D 33
	2.2	2.8.	Vizualizace horizontálních řezů ve 2D v prostředí Surfer (program Kaolin_Viz)	37
	2.2	2.9.	Vizualizace sítě vertikálních řezů ve 2D v prostředí Surfer (program Kaolin_Viz)	39
	2.2	2.10.	Vizualizace kategorií bloků zásob ve 3D v prostředí Voxler (program Kaolin_Viz)	42
	2.2	2.11.	Případné doplnění vstupních údajů na základě prováděného těžebního průzkumu a přecho ke kroku 2.2.6	od 46
3.	Zá	ívěr		46
4.	4. Srov		Srovnání "novosti postupů"	46
5.	Po	Popis uplatnění Certifikované metodiky		47
6.	Ekonomické aspekty			47
Li	tera	tura		48
Se	znar	n obrá	ázků	49
Se	znar	n tabu	ılek	51